{"title":"Specialty Grand Challenge for Thermal System Design","authors":"Jin-Ku Kim","doi":"10.3389/fther.2022.945841","DOIUrl":null,"url":null,"abstract":"Thermal Systems has been an integral part of our society as a main way of providing energy for peoples’ day-to-day living as well as industrial activities. Thermal systems are at the heart of energy infrastructure because the generation, distribution, recovery, utilization and storage of energy is related with the transformation, exchange or transfer of thermal heat to another form of energy. Continuous and dedicated efforts from industrial and academic communities have been made to the development of materials, components, equipment, processes and systems for thermal energy technologies, while societal and industrial importance in thermal systems have been fully acknowledged, and its economic benefits have been widely appreciated for generation by generation. Contrary to scientific achievements made for the improvement of thermodynamic efficiency and economics of thermal systems, little attention has been being paid to the sustainable generation and utilization of thermal energy. Recognition of global climate change and its negative impact on society has driven us to turn our focus on the development of net-zero energy technologies and its implementation in our industrial and district thermal systems. The introduction of policies for cutting CO2 emissions and a wide range of pledges for achieving net-zero by 2050 from various countries and companies clearly demonstrate urgency and importance of speeding up the transition of conventional thermal systems to sustainable one. However, it is not straightforward in practice to achieve rapid transition to the carbon-free thermal systems. For the last few centuries, the thermal conversion of fossil fuels has played a main role for generating energy, and industrial and domestic energy systems are equipped with devices and units which are optimized with the utilization of combustion heat from fossil fuels. Clean sources of energy, for example, biomass, renewable, hydrogen, etc have different thermodynamic properties and thermo-physical behaviour, which often requires fundamental changes from materials to system integration of existing fossil-fuel-based technologies. Also, most of net-zero energy technologies are not technologically mature to be readily available for end-users or are not economically viable enough to be competitive to fossil fuel-based technologies. In order to deal with such difficulties and drawbacks related to the introduction of net-zero technologies, various R&D activities should be carried out for achieving the energy-efficient and costeffective use of renewable energy. When new materials are synthesized or equipment is fundamentally upgraded for net-zero thermal systems, technical advances made from such development should be strategically integrated to the existing energy systems or be evolved to propose new paths for the sustainable utilization of thermal energy for the future. On the other hand, scientific efforts for the development of net-zero energy technologies in these days are made in a multi-disciplinary and multi-scale manner, covering various subjects of natural science and engineering from quantum and molecular simulation to process design and system integration, which demands multi-physics modelling from quantum scale to macro-scale. Under current diverse and complex research environments, “design” becomes more a critical and essential discipline than ever for the development of thermal systems technologies, as thermal systems should be “designed” holistically to select the most appropriate units, to determine the optimal system configuration and to Edited and reviewed by: Xianguo Li, University of Waterloo, Canada","PeriodicalId":73110,"journal":{"name":"Frontiers in thermal engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in thermal engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fther.2022.945841","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Thermal Systems has been an integral part of our society as a main way of providing energy for peoples’ day-to-day living as well as industrial activities. Thermal systems are at the heart of energy infrastructure because the generation, distribution, recovery, utilization and storage of energy is related with the transformation, exchange or transfer of thermal heat to another form of energy. Continuous and dedicated efforts from industrial and academic communities have been made to the development of materials, components, equipment, processes and systems for thermal energy technologies, while societal and industrial importance in thermal systems have been fully acknowledged, and its economic benefits have been widely appreciated for generation by generation. Contrary to scientific achievements made for the improvement of thermodynamic efficiency and economics of thermal systems, little attention has been being paid to the sustainable generation and utilization of thermal energy. Recognition of global climate change and its negative impact on society has driven us to turn our focus on the development of net-zero energy technologies and its implementation in our industrial and district thermal systems. The introduction of policies for cutting CO2 emissions and a wide range of pledges for achieving net-zero by 2050 from various countries and companies clearly demonstrate urgency and importance of speeding up the transition of conventional thermal systems to sustainable one. However, it is not straightforward in practice to achieve rapid transition to the carbon-free thermal systems. For the last few centuries, the thermal conversion of fossil fuels has played a main role for generating energy, and industrial and domestic energy systems are equipped with devices and units which are optimized with the utilization of combustion heat from fossil fuels. Clean sources of energy, for example, biomass, renewable, hydrogen, etc have different thermodynamic properties and thermo-physical behaviour, which often requires fundamental changes from materials to system integration of existing fossil-fuel-based technologies. Also, most of net-zero energy technologies are not technologically mature to be readily available for end-users or are not economically viable enough to be competitive to fossil fuel-based technologies. In order to deal with such difficulties and drawbacks related to the introduction of net-zero technologies, various R&D activities should be carried out for achieving the energy-efficient and costeffective use of renewable energy. When new materials are synthesized or equipment is fundamentally upgraded for net-zero thermal systems, technical advances made from such development should be strategically integrated to the existing energy systems or be evolved to propose new paths for the sustainable utilization of thermal energy for the future. On the other hand, scientific efforts for the development of net-zero energy technologies in these days are made in a multi-disciplinary and multi-scale manner, covering various subjects of natural science and engineering from quantum and molecular simulation to process design and system integration, which demands multi-physics modelling from quantum scale to macro-scale. Under current diverse and complex research environments, “design” becomes more a critical and essential discipline than ever for the development of thermal systems technologies, as thermal systems should be “designed” holistically to select the most appropriate units, to determine the optimal system configuration and to Edited and reviewed by: Xianguo Li, University of Waterloo, Canada