Existence of nontrivial solutions to Schrödinger systems with linear and nonlinear couplings via Morse theory

Pub Date : 2023-06-23 DOI:10.12775/tmna.2022.032
Zhitao Zhang, Meng Yu, Xiaotian Zheng
{"title":"Existence of nontrivial solutions to Schrödinger systems with linear and nonlinear couplings via Morse theory","authors":"Zhitao Zhang, Meng Yu, Xiaotian Zheng","doi":"10.12775/tmna.2022.032","DOIUrl":null,"url":null,"abstract":"In this paper, we use Morse theory to study existence of nontrivial solutions to the following Schrödinger system with linear and nonlinear couplings which arises from Bose-Einstein condensates:\n$$\n\\begin{cases}\n-\\Delta u+\\lambda_{1} u+\\kappa v=\\mu_{1} u^{3}+\\beta uv^{2}\n& \\text{in } \\Omega,\\\\\n-\\Delta v+\\lambda_{2} v+\\kappa u=\\mu_{2} v^{3}+\\beta vu^{2}\n& \\text{in } \\Omega,\\\\\nu=v=0 & \\text{on } \\partial\\Omega,\n\\end{cases}\n$$\nwhere $\\Omega$ is a bounded smooth domain in $\\mathbb{R}^{N}$($N=2,3$),\n$\\lambda_{1},\\lambda_{2},\\mu_{1},\\mu_{2} \\in \\mathbb{R} \\setminus \\{ 0 \\}$,\n$\\beta, \\kappa \\in \\mathbb{R}$.\n In two cases of\n$\\kappa=0$ and $\\kappa\\neq 0$, by transferring an eigenvalue problem into an algebraic problem, we compute the Morse index and critical groups of the trivial\n solution. Furthermore, even when the trivial solution is degenerate,\nwe show a local linking structure of energy functional at zero within a suitable\n parameter range and then get critical groups of the trivial solution.\nAs an application, we use Morse theory to get an existence theorem on existence\nof nontrivial solutions under some conditions.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.12775/tmna.2022.032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we use Morse theory to study existence of nontrivial solutions to the following Schrödinger system with linear and nonlinear couplings which arises from Bose-Einstein condensates: $$ \begin{cases} -\Delta u+\lambda_{1} u+\kappa v=\mu_{1} u^{3}+\beta uv^{2} & \text{in } \Omega,\\ -\Delta v+\lambda_{2} v+\kappa u=\mu_{2} v^{3}+\beta vu^{2} & \text{in } \Omega,\\ u=v=0 & \text{on } \partial\Omega, \end{cases} $$ where $\Omega$ is a bounded smooth domain in $\mathbb{R}^{N}$($N=2,3$), $\lambda_{1},\lambda_{2},\mu_{1},\mu_{2} \in \mathbb{R} \setminus \{ 0 \}$, $\beta, \kappa \in \mathbb{R}$. In two cases of $\kappa=0$ and $\kappa\neq 0$, by transferring an eigenvalue problem into an algebraic problem, we compute the Morse index and critical groups of the trivial solution. Furthermore, even when the trivial solution is degenerate, we show a local linking structure of energy functional at zero within a suitable parameter range and then get critical groups of the trivial solution. As an application, we use Morse theory to get an existence theorem on existence of nontrivial solutions under some conditions.
分享
查看原文
基于Morse理论的线性和非线性耦合Schrödinger系统非平凡解的存在性
本文利用莫尔斯理论研究了以下由玻色-爱因斯坦凝聚引起的具有线性和非线性耦合的Schrödinger系统的非平凡解的存在性:$$\begin{cases}-\Delta u+\lambda_{1} u+\kappa v=\mu_{1} u^{3}+\beta uv^{2}& \text{in } \Omega,\\-\Delta v+\lambda_{2} v+\kappa u=\mu_{2} v^{3}+\beta vu^{2}& \text{in } \Omega,\\u=v=0 & \text{on } \partial\Omega,\end{cases}$$其中$\Omega$是$\mathbb{R}^{N}$ ($N=2,3$), $\lambda_{1},\lambda_{2},\mu_{1},\mu_{2} \in \mathbb{R} \setminus \{ 0 \}$, $\beta, \kappa \in \mathbb{R}$中的有界光滑域。在$\kappa=0$和$\kappa\neq 0$两种情况下,通过将特征值问题转化为代数问题,我们计算了平凡解的莫尔斯指数和临界群。进一步,当平凡解是简并解时,在适当的参数范围内给出了一个能量泛函于零的局部连接结构,从而得到了平凡解的临界群。作为应用,我们利用Morse理论得到了在某些条件下非平凡解的存在性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信