Thermal Behavior of Monocrystalline Silicon Solar Cells: A Numerical and Experimental Investigation on the Module Encapsulation Materials

Q4 Chemical Engineering
A. Pavlović, C. Fragassa, M. Bertoldi, V. Mikhnych
{"title":"Thermal Behavior of Monocrystalline Silicon Solar Cells: A Numerical and Experimental Investigation on the Module Encapsulation Materials","authors":"A. Pavlović, C. Fragassa, M. Bertoldi, V. Mikhnych","doi":"10.22055/JACM.2021.37852.3101","DOIUrl":null,"url":null,"abstract":"This research outlines the numerical predictions of the heat distribution in solar cells, accompanied by their empirical validation. Finite element thermal models of five laminated silicon solar photovoltaic cells were firstly established using a simulation software (ANSYS®). The flexible laminated solar cells under study are made of a highly transparent frontsheet, a silicon cell between two encapsulants, and a backsheet. Different combinations of layers (i.e., materials and thicknesses) were taken into account in order to analyze their effect on thermal behavior. Thermal properties of materials were derived in accordance with the literature. Similarly, boundary conditions, loads, and heat losses by reflection and convection were also specified. The solar cells were tested using solar lamps under standard conditions (irradiance: 1000W/m2; room-temperature: 25°C) with real-time temperatures measured by a thermal imager. This analysis offers an interpretation of how temperature evolves through the solar cell and, consequently, how the design choice can influence the cells’ efficiency.","PeriodicalId":37801,"journal":{"name":"Applied and Computational Mechanics","volume":"7 1","pages":"1847-1855"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22055/JACM.2021.37852.3101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 5

Abstract

This research outlines the numerical predictions of the heat distribution in solar cells, accompanied by their empirical validation. Finite element thermal models of five laminated silicon solar photovoltaic cells were firstly established using a simulation software (ANSYS®). The flexible laminated solar cells under study are made of a highly transparent frontsheet, a silicon cell between two encapsulants, and a backsheet. Different combinations of layers (i.e., materials and thicknesses) were taken into account in order to analyze their effect on thermal behavior. Thermal properties of materials were derived in accordance with the literature. Similarly, boundary conditions, loads, and heat losses by reflection and convection were also specified. The solar cells were tested using solar lamps under standard conditions (irradiance: 1000W/m2; room-temperature: 25°C) with real-time temperatures measured by a thermal imager. This analysis offers an interpretation of how temperature evolves through the solar cell and, consequently, how the design choice can influence the cells’ efficiency.
单晶硅太阳能电池的热行为:模块封装材料的数值和实验研究
这项研究概述了太阳能电池中热量分布的数值预测,并进行了实证验证。首次利用ANSYS软件建立了五个叠层硅太阳能光伏电池的有限元热模型。正在研究的柔性层压太阳能电池由高度透明的前片、两种密封剂之间的硅电池和底片制成。为了分析它们对热行为的影响,考虑了层的不同组合(即材料和厚度)。材料的热性能是根据文献推导的。同样,还规定了边界条件、载荷以及反射和对流引起的热损失。使用太阳能灯在标准条件下测试太阳能电池(辐照度:1000W/m2;室温:25°C),并通过热成像仪测量实时温度。该分析解释了太阳能电池中的温度如何变化,以及设计选择如何影响电池的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied and Computational Mechanics
Applied and Computational Mechanics Engineering-Computational Mechanics
CiteScore
0.80
自引率
0.00%
发文量
10
审稿时长
14 weeks
期刊介绍: The ACM journal covers a broad spectrum of topics in all fields of applied and computational mechanics with special emphasis on mathematical modelling and numerical simulations with experimental support, if relevant. Our audience is the international scientific community, academics as well as engineers interested in such disciplines. Original research papers falling into the following areas are considered for possible publication: solid mechanics, mechanics of materials, thermodynamics, biomechanics and mechanobiology, fluid-structure interaction, dynamics of multibody systems, mechatronics, vibrations and waves, reliability and durability of structures, structural damage and fracture mechanics, heterogenous media and multiscale problems, structural mechanics, experimental methods in mechanics. This list is neither exhaustive nor fixed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信