On the relative K-group in the ETNC, Part II

Pub Date : 2020-11-06 DOI:10.1007/s40062-020-00267-z
Oliver Braunling
{"title":"On the relative K-group in the ETNC, Part II","authors":"Oliver Braunling","doi":"10.1007/s40062-020-00267-z","DOIUrl":null,"url":null,"abstract":"<p>In a previous paper we showed that, under some assumptions, the relative <i>K</i>-group in the Burns–Flach formulation of the equivariant Tamagawa number conjecture (ETNC) is canonically isomorphic to a <i>K</i>-group of locally compact equivariant modules. Our approach as well as the standard one both involve presentations: One due to Bass–Swan, applied to categories of finitely generated projective modules; and one due to Nenashev, applied to our topological modules without finite generation assumptions. In this paper we provide an explicit isomorphism.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00267-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00267-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In a previous paper we showed that, under some assumptions, the relative K-group in the Burns–Flach formulation of the equivariant Tamagawa number conjecture (ETNC) is canonically isomorphic to a K-group of locally compact equivariant modules. Our approach as well as the standard one both involve presentations: One due to Bass–Swan, applied to categories of finitely generated projective modules; and one due to Nenashev, applied to our topological modules without finite generation assumptions. In this paper we provide an explicit isomorphism.

分享
查看原文
论etc中的相对k群,第二部分
在上一篇论文中,我们证明了在某些假设下,等变Tamagawa数猜想(ETNC)的Burns-Flach公式中的相对k群与局部紧等变模的k群是正则同构的。我们的方法和标准的方法都涉及到演示:一个是由于Bass-Swan,应用于有限生成的投影模块的类别;另一个是Nenashev的,应用于我们的拓扑模块,没有有限生成假设。本文给出了一个显式同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信