{"title":"Banach spaces $l_{p}\\left( \\mathbb{BC}\\left( N\\right) \\right) $ with the $\\ast -$ norm $\\overset{..}{\\parallel }.\\overset{..}{\\parallel }_{2,l_{p}\\left( \\mathbb{BC}\\left( N\\right) \\right) }$ and some properties","authors":"Nilay Sager, B. Sağır","doi":"10.32513/tmj/19322008123","DOIUrl":null,"url":null,"abstract":"In this work, we construct vector spaces $l_{p}\\left( \\mathbb{BC}\\left(N\\right) \\right) $ of absolutely $p-$ summable $\\ast -$bicomplex sequences with the $\\ast -$ norm $\\overset{..}{\\parallel }.\\overset{..}{\\parallel }_{2,l_{p}\\left( \\mathbb{BC}\\left( N\\right) \\right) }$ over the field $\\mathbb{C}\\left( N\\right).$ Also, we show that some inclusion relations hold and these vector spaces are Banach spaces by using Minkowski's inequality in $\\mathbb{BC}\\left( N\\right) $ with respect to $\\overset{..}{\\parallel }.\\overset{..}{\\parallel }_{2}.$","PeriodicalId":43977,"journal":{"name":"Tbilisi Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tbilisi Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32513/tmj/19322008123","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we construct vector spaces $l_{p}\left( \mathbb{BC}\left(N\right) \right) $ of absolutely $p-$ summable $\ast -$bicomplex sequences with the $\ast -$ norm $\overset{..}{\parallel }.\overset{..}{\parallel }_{2,l_{p}\left( \mathbb{BC}\left( N\right) \right) }$ over the field $\mathbb{C}\left( N\right).$ Also, we show that some inclusion relations hold and these vector spaces are Banach spaces by using Minkowski's inequality in $\mathbb{BC}\left( N\right) $ with respect to $\overset{..}{\parallel }.\overset{..}{\parallel }_{2}.$