Directional detection of dark matter using solid-state quantum sensing

IF 4.2 Q2 QUANTUM SCIENCE & TECHNOLOGY
R. Ebadi, M. C. Marshall, D. Phillips, Johannes W. Cremer, T. Zhou, Michael Titze, P. Kehayias, M. Saleh Ziabari, N. Delegan, S. Rajendran, A. Sushkov, F. Heremans, E. Bielejec, M. Holt, R. Walsworth
{"title":"Directional detection of dark matter using solid-state quantum sensing","authors":"R. Ebadi, M. C. Marshall, D. Phillips, Johannes W. Cremer, T. Zhou, Michael Titze, P. Kehayias, M. Saleh Ziabari, N. Delegan, S. Rajendran, A. Sushkov, F. Heremans, E. Bielejec, M. Holt, R. Walsworth","doi":"10.1116/5.0117301","DOIUrl":null,"url":null,"abstract":"Next-generation dark matter (DM) detectors searching for weakly interacting massive particles (WIMPs) will be sensitive to coherent scattering from solar neutrinos, demanding an efficient background-signal discrimination tool. Directional detectors improve sensitivity to WIMP DM despite the irreducible neutrino background. Wide-bandgap semiconductors offer a path to directional detection in a high-density target material. A detector of this type operates in a hybrid mode. The WIMP or neutrino-induced nuclear recoil is detected using real-time charge, phonon, or photon collection. The directional signal, however, is imprinted as a durable sub-micron damage track in the lattice structure. This directional signal can be read out by a variety of atomic physics techniques, from point defect quantum sensing to x-ray microscopy. In this Review, we present the detector principle as well as the status of the experimental techniques required for directional readout of nuclear recoil tracks. Specifically, we focus on diamond as a target material; it is both a leading platform for emerging quantum technologies and a promising component of next-generation semiconductor electronics. Based on the development and demonstration of directional readout in diamond over the next decade, a future WIMP detector will leverage or motivate advances in multiple disciplines toward precision dark matter and neutrino physics.","PeriodicalId":93525,"journal":{"name":"AVS quantum science","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AVS quantum science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/5.0117301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"QUANTUM SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 13

Abstract

Next-generation dark matter (DM) detectors searching for weakly interacting massive particles (WIMPs) will be sensitive to coherent scattering from solar neutrinos, demanding an efficient background-signal discrimination tool. Directional detectors improve sensitivity to WIMP DM despite the irreducible neutrino background. Wide-bandgap semiconductors offer a path to directional detection in a high-density target material. A detector of this type operates in a hybrid mode. The WIMP or neutrino-induced nuclear recoil is detected using real-time charge, phonon, or photon collection. The directional signal, however, is imprinted as a durable sub-micron damage track in the lattice structure. This directional signal can be read out by a variety of atomic physics techniques, from point defect quantum sensing to x-ray microscopy. In this Review, we present the detector principle as well as the status of the experimental techniques required for directional readout of nuclear recoil tracks. Specifically, we focus on diamond as a target material; it is both a leading platform for emerging quantum technologies and a promising component of next-generation semiconductor electronics. Based on the development and demonstration of directional readout in diamond over the next decade, a future WIMP detector will leverage or motivate advances in multiple disciplines toward precision dark matter and neutrino physics.
利用固态量子传感的暗物质定向探测
寻找弱相互作用大质量粒子(wimp)的下一代暗物质(DM)探测器将对来自太阳中微子的相干散射敏感,这需要一种有效的背景信号识别工具。尽管存在不可约的中微子背景,定向探测器提高了对WIMP DM的灵敏度。宽带隙半导体为高密度靶材料的定向检测提供了一条途径。这种类型的检测器以混合模式工作。使用实时电荷、声子或光子收集来检测WIMP或中微子诱导的核反冲。然而,定向信号作为持久的亚微米损伤轨迹印在晶格结构中。这种方向信号可以通过各种原子物理技术读出,从点缺陷量子传感到x射线显微镜。本文介绍了核反冲轨迹定向读出的探测器原理和实验技术现状。具体来说,我们专注于钻石作为目标材料;它既是新兴量子技术的领先平台,也是下一代半导体电子产品的重要组成部分。未来十年,基于金刚石定向读出的发展和演示,未来的WIMP探测器将利用或推动多个学科在精确暗物质和中微子物理方面的进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信