Remarks on "Comparison between the Laplacian energy-like invariant and the Kirchhoff index''

IF 0.7 4区 数学 Q2 Mathematics
Xiaodan Chen, Guoliang Hao
{"title":"Remarks on \"Comparison between the Laplacian energy-like invariant and the Kirchhoff index''","authors":"Xiaodan Chen, Guoliang Hao","doi":"10.13001/ela.2022.6383","DOIUrl":null,"url":null,"abstract":"The Laplacian-energy-like invariant and the Kirchhoff index of an $n$-vertex simple connected graph $G$ are, respectively, defined to be $LEL(G)=\\sum_{i=1}^{n-1}\\sqrt{\\mu_i}$ and $Kf(G)=n\\sum_{i=1}^{n-1}\\frac{1}{\\mu_i}$, where $\\mu_1,\\mu_2,\\ldots,\\mu_{n-1},\\mu_n=0$ are the Laplacian eigenvalues of $G$. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the Kirchhoff index. Electron. J. Linear Algebra 31:27-41, 2016] are corrected and improved.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6383","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The Laplacian-energy-like invariant and the Kirchhoff index of an $n$-vertex simple connected graph $G$ are, respectively, defined to be $LEL(G)=\sum_{i=1}^{n-1}\sqrt{\mu_i}$ and $Kf(G)=n\sum_{i=1}^{n-1}\frac{1}{\mu_i}$, where $\mu_1,\mu_2,\ldots,\mu_{n-1},\mu_n=0$ are the Laplacian eigenvalues of $G$. In this paper, some results in the paper [Comparison between the Laplacian-energy-like invariant and the Kirchhoff index. Electron. J. Linear Algebra 31:27-41, 2016] are corrected and improved.
关于“拉普拉斯类能不变量与Kirchhoff指数的比较”的评注
定义$n$ -顶点简单连通图$G$的类拉普拉斯能量不变量和Kirchhoff指数分别为$LEL(G)=\sum_{i=1}^{n-1}\sqrt{\mu_i}$和$Kf(G)=n\sum_{i=1}^{n-1}\frac{1}{\mu_i}$,其中$\mu_1,\mu_2,\ldots,\mu_{n-1},\mu_n=0$为$G$的拉普拉斯特征值。本文对文中的一些结果[拉普拉斯类能不变量与基尔霍夫指数的比较]进行了讨论。电子。[j] .数学学报(自然科学版),2016。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信