Stable Higgs bundles over positive principal elliptic fibrations

IF 0.5 Q3 MATHEMATICS
I. Biswas, Mahan Mj, M. Verbitsky
{"title":"Stable Higgs bundles over positive principal elliptic fibrations","authors":"I. Biswas, Mahan Mj, M. Verbitsky","doi":"10.1515/coma-2018-0012","DOIUrl":null,"url":null,"abstract":"Abstract Let M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.","PeriodicalId":42393,"journal":{"name":"Complex Manifolds","volume":"5 1","pages":"195 - 201"},"PeriodicalIF":0.5000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/coma-2018-0012","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Manifolds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/coma-2018-0012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Let M be a compact complex manifold of dimension at least three and Π : M → X a positive principal elliptic fibration, where X is a compact Kähler orbifold. Fix a preferred Hermitian metric on M. In [14], the third author proved that every stable vector bundle on M is of the form L⊕ Π ⃰ B0, where B0 is a stable vector bundle on X, and L is a holomorphic line bundle on M. Here we prove that every stable Higgs bundle on M is of the form (L ⊕ Π ⃰B0, Π ⃰ ɸX), where (B0, ɸX) is a stable Higgs bundle on X and L is a holomorphic line bundle on M.
正主椭圆纤维上的稳定Higgs丛
摘要设M是一个维数至少为3的紧致复流形→ X是正主椭圆fibration,其中X是紧Kähler轨道折叠。在[14]中,第三作者证明了M上的每一个稳定向量丛的形式都是LŞ⃰ B0,其中B0是X上的稳定向量丛,L是M上的全纯线丛⃰B0,π⃰ ΦX),其中(B0,ΦX)是X上的稳定Higgs丛,L是M上的全纯线丛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Complex Manifolds
Complex Manifolds MATHEMATICS-
CiteScore
1.30
自引率
20.00%
发文量
14
审稿时长
25 weeks
期刊介绍: Complex Manifolds is devoted to the publication of results on these and related topics: Hermitian geometry, Kähler and hyperkähler geometry Calabi-Yau metrics, PDE''s on complex manifolds Generalized complex geometry Deformations of complex structures Twistor theory Geometric flows on complex manifolds Almost complex geometry Quaternionic geometry Geometric theory of analytic functions Holomorphic dynamics Several complex variables Dolbeault cohomology CR geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信