Identification of parameters of structure of soil curvilinear massifs by numerical methods of complex analysis

IF 0.6 Q4 GEOCHEMISTRY & GEOPHYSICS
A. Bomba, M. Boichura, O. Michuta
{"title":"Identification of parameters of structure of soil curvilinear massifs by numerical methods of complex analysis","authors":"A. Bomba, M. Boichura, O. Michuta","doi":"10.24028/gj.v44i2.256402","DOIUrl":null,"url":null,"abstract":"The works by specialists in electrical tomography usually model soil masses as a two-dimensional single-connected domain, the boundary of which consists of a horizon line and some «deep» line with a constant potential value on it. At the same time, the latter is set very approximately because of the «absence» of charges in remote (deep) areas. To avoid such simplification, the author proposes to solve the corresponding model problem in a relatively simple domain through its subsequent conformal mapping onto studied physical environment with a complex structure. The latter is carried out using some fractional-rational function. Whereas to simulate the movement of charges, numerical complex analysis methods are generally used. In this case, common simplification regarding the «point-like» nature of the applied quasipotential sections is rejected, and the distribution of current density on the last is taken into account. The studied medium, for example, is assumed to be given in the form of a function of local bursts of homogeneities.\nImage reconstruction is conducted during alternate iterative solving of problems on the construction of a range of fields of current densities and refinement of parameters of conductivity coefficient. The latter is implemented out under the minimization of the functional of residuals between discrete (known) measurements of potential and stream functions on the surface of the soil mass and the corresponding calculated ones, using the ideas of regularization. Non-use of information (due to the high complexity of obtaining it) about the distribution of voltage and current in deep areas generates a certain mathematical uncertainty. However, its influence on the results of image reconstruction in the near-surface areas is insignificant.\nNumerical experiments were performed and analyzed. For the given examples, the conductivity coefficient on the «lion’s share» of the medium was found with a small residual. Whereas the coordinates of the identified bursts, in comparison with a priori known ones, shifted towards the surface of soil mass. This is explained both by the peculiarities of the construction of the subproblem of identification of the conductivity coefficient in the absence of boundary conditions at deep sections and the existing significant quasiconformity residuals. In the future, these shortcomings can be «eliminated» by implementing an additional intermediate conformal mapping onto a circle and applying «fictitious orthogonalization» in the vicinity of the «junction» points of boundary streamlines and equipotential lines.","PeriodicalId":54141,"journal":{"name":"Geofizicheskiy Zhurnal-Geophysical Journal","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geofizicheskiy Zhurnal-Geophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24028/gj.v44i2.256402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

The works by specialists in electrical tomography usually model soil masses as a two-dimensional single-connected domain, the boundary of which consists of a horizon line and some «deep» line with a constant potential value on it. At the same time, the latter is set very approximately because of the «absence» of charges in remote (deep) areas. To avoid such simplification, the author proposes to solve the corresponding model problem in a relatively simple domain through its subsequent conformal mapping onto studied physical environment with a complex structure. The latter is carried out using some fractional-rational function. Whereas to simulate the movement of charges, numerical complex analysis methods are generally used. In this case, common simplification regarding the «point-like» nature of the applied quasipotential sections is rejected, and the distribution of current density on the last is taken into account. The studied medium, for example, is assumed to be given in the form of a function of local bursts of homogeneities. Image reconstruction is conducted during alternate iterative solving of problems on the construction of a range of fields of current densities and refinement of parameters of conductivity coefficient. The latter is implemented out under the minimization of the functional of residuals between discrete (known) measurements of potential and stream functions on the surface of the soil mass and the corresponding calculated ones, using the ideas of regularization. Non-use of information (due to the high complexity of obtaining it) about the distribution of voltage and current in deep areas generates a certain mathematical uncertainty. However, its influence on the results of image reconstruction in the near-surface areas is insignificant. Numerical experiments were performed and analyzed. For the given examples, the conductivity coefficient on the «lion’s share» of the medium was found with a small residual. Whereas the coordinates of the identified bursts, in comparison with a priori known ones, shifted towards the surface of soil mass. This is explained both by the peculiarities of the construction of the subproblem of identification of the conductivity coefficient in the absence of boundary conditions at deep sections and the existing significant quasiconformity residuals. In the future, these shortcomings can be «eliminated» by implementing an additional intermediate conformal mapping onto a circle and applying «fictitious orthogonalization» in the vicinity of the «junction» points of boundary streamlines and equipotential lines.
用复变分析数值方法识别土壤曲线体结构参数
电断层扫描专家的工作通常将土体建模为二维单连通域,其边界由一条水平线和一些具有恒定电位值的“深”线组成。与此同时,后者的设定非常接近,因为在偏远(深)地区“没有”电荷。为了避免这种简化,作者提出在一个相对简单的域中,通过其后续的保角映射到具有复杂结构的所研究的物理环境中来解决相应的模型问题。后者是用分数有理函数来实现的。而为了模拟电荷的运动,一般采用数值复变分析方法。在这种情况下,关于所施加的准势截面的“点”性质的一般简化被拒绝,并考虑到最后一个上的电流密度分布。例如,假定所研究的介质是以局部均匀性爆发的函数形式给出的。图像重建是在电流密度场范围的构建和电导率系数参数的细化交替迭代求解过程中进行的。后者是利用正则化思想,在最小化土体表面上的势函数和流函数的离散(已知)测量值与相应计算值之间的残差函数的情况下实现的。不使用深区电压和电流分布的信息(由于获取信息的高度复杂性)会产生一定的数学不确定性。但其对近地表图像重建结果的影响不显著。进行了数值实验并进行了分析。对于给定的例子,在“大部分”介质上的电导率系数具有很小的残余。然而,与先验的已知爆发相比,已识别的爆发的坐标向土体表面移动。这可以用深层截面无边界条件下电导率系数识别子问题构造的特殊性和现有的显著准整合性残差来解释。在未来,这些缺点可以通过实现一个额外的中间保角映射到一个圆上,并在边界流线和等势线的“交界处”点附近应用“虚拟正交化”来“消除”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geofizicheskiy Zhurnal-Geophysical Journal
Geofizicheskiy Zhurnal-Geophysical Journal GEOCHEMISTRY & GEOPHYSICS-
自引率
60.00%
发文量
50
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信