Some observations on a clopen version of the Rothberger property

IF 0.6 Q3 MATHEMATICS
Cubo Pub Date : 2023-03-11 DOI:10.56754/0719-0646.2502.161
M. Bhardwaj, A. Osipov
{"title":"Some observations on a clopen version of the Rothberger property","authors":"M. Bhardwaj, A. Osipov","doi":"10.56754/0719-0646.2502.161","DOIUrl":null,"url":null,"abstract":"In this paper, we prove that a clopen version $S_1(\\mathcal{C}_\\mathcal{O}, \\mathcal{C}_\\mathcal{O})$ of the Rothberger property and Borel strong measure zeroness are independent. For a zero-dimensional metric space $(X,d)$, $X$ satisfies $S_1(\\mathcal{C}_\\mathcal{O}, \\mathcal{C}_\\mathcal{O})$ if, and only if, $X$ has Borel strong measure zero with respect to each metric which has the same topology as $d$ has. In a zero-dimensional space, the game $G_1(\\mathcal{O}, \\mathcal{O})$ is equivalent to the game $G_1(\\mathcal{C}_\\mathcal{O}, \\mathcal{C}_\\mathcal{O})$ and the point-open game is equivalent to the point-clopen game. Using reflections, we obtain that the game $G_1(\\mathcal{C}_\\mathcal{O}, \\mathcal{C}_\\mathcal{O})$ and the point-clopen game are strategically and Markov dual. An example is given for a space on which the game $G_1(\\mathcal{C}_\\mathcal{O}, \\mathcal{C}_\\mathcal{O})$ is undetermined.","PeriodicalId":36416,"journal":{"name":"Cubo","volume":" ","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cubo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56754/0719-0646.2502.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we prove that a clopen version $S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})$ of the Rothberger property and Borel strong measure zeroness are independent. For a zero-dimensional metric space $(X,d)$, $X$ satisfies $S_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})$ if, and only if, $X$ has Borel strong measure zero with respect to each metric which has the same topology as $d$ has. In a zero-dimensional space, the game $G_1(\mathcal{O}, \mathcal{O})$ is equivalent to the game $G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})$ and the point-open game is equivalent to the point-clopen game. Using reflections, we obtain that the game $G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})$ and the point-clopen game are strategically and Markov dual. An example is given for a space on which the game $G_1(\mathcal{C}_\mathcal{O}, \mathcal{C}_\mathcal{O})$ is undetermined.
一些关于Rothberger属性的开放版本的观察
本文证明了一个clopen版本$S_1(\mathcal{C}_\mathcal{O},\mathcal{C}_\mathcal{O})$和Borel强测度零度是独立的。对于零维度量空间$(X,d)$,$X$满足$S_1(\mathcal{C}_\mathcal{O},\mathcal{C}_\mathcal{O})$当且仅当,$X$相对于与$d$具有相同拓扑的每个度量具有Borel强测度零。在零维空间中,游戏$G_1(\mathcal{O},\mathcal{O})$等价于游戏$G_ 1(\math cal{C}_\mathcal{O},\mathcal{C}_\mathcal{O})$,并且积分开放游戏等价于积分封闭游戏。使用反射,我们得到游戏$G_1(\mathcal{C}_\mathcal{O},\mathcal{C}_\mathcal{O})$和点clopen对策是策略和马尔可夫对偶的。给出了游戏$G_1(\mathcal{C}_\mathcal{O},\mathcal{C}_\mathcal{O})$是未确定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cubo
Cubo Mathematics-Logic
CiteScore
1.20
自引率
0.00%
发文量
22
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信