Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013
{"title":"Generación de datos de cambio de coberturas vegetales en la sabana de Bogotá mediante el uso de series temporales con imágenes Landsat e imágenes sintéticas MODIS-Landsat entre los años 2007 y 2013","authors":"M. A. Zaraza-Aguilera, L. M. Manrique-Chacón","doi":"10.4995/raet.2019.12280","DOIUrl":null,"url":null,"abstract":"Currently, new tools have been implemented that merge high-resolution temporal and spatial images for detection of change land cover. With the purpose of evaluate this type of techniques we generated a time series with Landsat satellite imagery and a time series with simulated images Landsat-MODIS, with the purpose of determining which of the two methods provides the best results in the change quantification in the Sabana of Bogota between 2007 and 2013. The processing consists of (i) Time Series with images Landsat trough BFAST, (ii) getting synthetic images through the ESTARFM algorithm; (iii) time series through BFAST with the use of simulated images. In the time series process, the series incorporating synthetic images and images corrected by the gaps generated the best accuracy indexes (global accuracy: 88.16% y Kappa: 76.52%) with respect to the series that incorporated only the images Landsat (global accuracy: 83% y Kappa: 65.18%); it indicates that densification of time series allow to get the best results in the quantification of changes and dynamics of land cover. The methodology applied represents an advance about generation of synthetic images and monitoring and detection of changes in land cover through time series. This is one of the first studies realized in the country that includes this type of process.","PeriodicalId":43626,"journal":{"name":"Revista de Teledeteccion","volume":" ","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista de Teledeteccion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4995/raet.2019.12280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"REMOTE SENSING","Score":null,"Total":0}
引用次数: 5
Abstract
Currently, new tools have been implemented that merge high-resolution temporal and spatial images for detection of change land cover. With the purpose of evaluate this type of techniques we generated a time series with Landsat satellite imagery and a time series with simulated images Landsat-MODIS, with the purpose of determining which of the two methods provides the best results in the change quantification in the Sabana of Bogota between 2007 and 2013. The processing consists of (i) Time Series with images Landsat trough BFAST, (ii) getting synthetic images through the ESTARFM algorithm; (iii) time series through BFAST with the use of simulated images. In the time series process, the series incorporating synthetic images and images corrected by the gaps generated the best accuracy indexes (global accuracy: 88.16% y Kappa: 76.52%) with respect to the series that incorporated only the images Landsat (global accuracy: 83% y Kappa: 65.18%); it indicates that densification of time series allow to get the best results in the quantification of changes and dynamics of land cover. The methodology applied represents an advance about generation of synthetic images and monitoring and detection of changes in land cover through time series. This is one of the first studies realized in the country that includes this type of process.
目前,已经实施了新的工具,可以合并高分辨率的时空图像来检测土地覆盖的变化。为了评估这类技术,我们用Landsat卫星图像生成了一个时间序列,用Landsat- modis模拟图像生成了一个时间序列,目的是确定哪两种方法在2007年至2013年波哥大Sabana的变化量化方面提供了最好的结果。处理过程包括:(i)通过BFAST获取Landsat图像的时间序列,(ii)通过ESTARFM算法获取合成图像;(iii)使用模拟图像通过BFAST进行时间序列分析。在时间序列过程中,合成图像和间隙校正图像的序列相对于仅包含Landsat图像的序列(全球精度:83% y Kappa: 65.18%)产生了最好的精度指标(全球精度:88.16% y Kappa: 76.52%);结果表明,时间序列的密实化可以获得量化土地覆盖变化和动态的最佳结果。所采用的方法代表了通过时间序列生成合成图像和监测和检测土地覆盖变化方面的进步。这是国内最早实现的包括这种过程的研究之一。