{"title":"Monotone systems involving variable-order nonlocal operators","authors":"Miguel Yangari","doi":"10.5565/publmat6612205","DOIUrl":null,"url":null,"abstract":": In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5565/publmat6612205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: In this paper, we study the existence and uniqueness of bounded viscosity solutions for parabolic Hamilton–Jacobi monotone systems in which the diffusion term is driven by variable-order nonlocal operators whose kernels depend on the space-time variable. We prove the existence of solutions via Perron’s method, and considering Hamiltonians with linear and superlinear nonlinearities related to their gradient growth we state a comparison principle for bounded sub and supersolutions. Moreover, we present steady-state large time behavior with an exponential rate of convergence.