He Xiao, Shoufeng Xue, Zimei Fu, Man Zhao, Li Zhang, Junming Zhang, Haishun Wu, Jianfeng Jia, Nianjun Yang
{"title":"Revealing component synergy of Ni–Fe/black phosphorous composites synthesized by self-designed electrochemical method for enhancing photoelectrocatalytic oxygen evolution reaction","authors":"He Xiao, Shoufeng Xue, Zimei Fu, Man Zhao, Li Zhang, Junming Zhang, Haishun Wu, Jianfeng Jia, Nianjun Yang","doi":"10.1007/s11706-023-0646-8","DOIUrl":null,"url":null,"abstract":"<div><p>Developing high-activity and low-cost catalysts is the key to eliminate the limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic overall water splitting. Herein, Ni–Fe/black phosphorous (BP) composites are synthesized using a simple three-electrode system, where exfoliation of bulky BP and synthesis of NiFe composites are simultaneously achieved. Under light illumination, the optimized Ni–Fe/BP composite exhibits excellent photoelectrocatalytic OER performance (e.g., the overpotential is 58 mV lower than a commercial RuO<sub>2</sub> electrocatalyst at a current density of 10 mA·cm<sup>−2</sup>). The electron transfer on this composite is proved to follow a Ni–BP–Fe pathway. The electronic structure of this Ni–Fe/BP composite is effectively regulated, leading to optimized adsorption strength of the intermediate OH* and improved intrinsic activity for the OER. Together with active sites on the support, this Ni–Fe/BP composite possesses abundant electrochemical active sites and a bug surface area for the OER. The introduction of light further accelerates the electrocatalytic OER. This work provides a novel and facile method to synthesize high-performance metal/BP composites as well as the approaches to reveal their OER mechanisms.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 2","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0646-8","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Developing high-activity and low-cost catalysts is the key to eliminate the limitation of sluggish anodic oxygen evolution reaction (OER) during electrocatalytic overall water splitting. Herein, Ni–Fe/black phosphorous (BP) composites are synthesized using a simple three-electrode system, where exfoliation of bulky BP and synthesis of NiFe composites are simultaneously achieved. Under light illumination, the optimized Ni–Fe/BP composite exhibits excellent photoelectrocatalytic OER performance (e.g., the overpotential is 58 mV lower than a commercial RuO2 electrocatalyst at a current density of 10 mA·cm−2). The electron transfer on this composite is proved to follow a Ni–BP–Fe pathway. The electronic structure of this Ni–Fe/BP composite is effectively regulated, leading to optimized adsorption strength of the intermediate OH* and improved intrinsic activity for the OER. Together with active sites on the support, this Ni–Fe/BP composite possesses abundant electrochemical active sites and a bug surface area for the OER. The introduction of light further accelerates the electrocatalytic OER. This work provides a novel and facile method to synthesize high-performance metal/BP composites as well as the approaches to reveal their OER mechanisms.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.