Transient receptor potential Ankyrin 1: structure, function and ligands

Q3 Pharmacology, Toxicology and Pharmaceutics
N. Pyatigorskaya, O. Filippova, N. S. Nikolenko, A. D. Kravchenko
{"title":"Transient receptor potential Ankyrin 1: structure, function and ligands","authors":"N. Pyatigorskaya, O. Filippova, N. S. Nikolenko, A. D. Kravchenko","doi":"10.3897/rrpharmacology.8.90214","DOIUrl":null,"url":null,"abstract":"Introduction: Transient receptor potential ankyrin 1 (TRPA1) is a protein expressed in many living organisms. During the study of TRPA1, its unique biological role as a universal and polymodal sensor of various altering agents was found. The aim of this study is to search and generalize information about structural features and molecular determinants, mechanisms of activation, action and modulation of TRPA1 as a universal pain and inflammation sensor, as well as the nature of activators and antagonists of this target and their therapeutic potential.\n Materials and methods: This article presents an overview of the results of scientific research of TRPA1, its modulators, as well as an overview of their pharmacological potential over the period from the discovery of these channels to the present, with an emphasis on the last decade.\n Results and discussion: The main collected data on expression, structural features and molecular determinants, mechanisms of activation and action of TRPA1 indicate its role as a universal and labile element of the primary response of the body to adverse exogenous and endogenous factors. Regardless of the nature of the stimulus, hyperstimulation of TRPA1 channels can lead to such phenomena as pain, inflammation, itching, edema and other manifestations of alteration, and therefore TRPA1 blockade can be used in the treatment of various diseases accompanied by these pathological conditions. Currently, TRPA1 antagonists are being actively searched for and studied, as evidenced by a high patent activity over the past 14 years; however, the molecular mechanisms of action and pharmacological properties of TRPA1 blockers remain understudied.\n Conclusion: Acquire of new information about TRPA1 will help in the development of its modulators, which can become promising analgesics, anti-inflammatory drugs, bronchodilators, and agents for the treatment of cardiovascular diseases of new generations.","PeriodicalId":21030,"journal":{"name":"Research Results in Pharmacology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research Results in Pharmacology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/rrpharmacology.8.90214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Transient receptor potential ankyrin 1 (TRPA1) is a protein expressed in many living organisms. During the study of TRPA1, its unique biological role as a universal and polymodal sensor of various altering agents was found. The aim of this study is to search and generalize information about structural features and molecular determinants, mechanisms of activation, action and modulation of TRPA1 as a universal pain and inflammation sensor, as well as the nature of activators and antagonists of this target and their therapeutic potential. Materials and methods: This article presents an overview of the results of scientific research of TRPA1, its modulators, as well as an overview of their pharmacological potential over the period from the discovery of these channels to the present, with an emphasis on the last decade. Results and discussion: The main collected data on expression, structural features and molecular determinants, mechanisms of activation and action of TRPA1 indicate its role as a universal and labile element of the primary response of the body to adverse exogenous and endogenous factors. Regardless of the nature of the stimulus, hyperstimulation of TRPA1 channels can lead to such phenomena as pain, inflammation, itching, edema and other manifestations of alteration, and therefore TRPA1 blockade can be used in the treatment of various diseases accompanied by these pathological conditions. Currently, TRPA1 antagonists are being actively searched for and studied, as evidenced by a high patent activity over the past 14 years; however, the molecular mechanisms of action and pharmacological properties of TRPA1 blockers remain understudied. Conclusion: Acquire of new information about TRPA1 will help in the development of its modulators, which can become promising analgesics, anti-inflammatory drugs, bronchodilators, and agents for the treatment of cardiovascular diseases of new generations.
Transient受体电位锚蛋白1:结构、功能和配体
简介:瞬时受体电位锚蛋白1(TRPA1)是一种在许多生物体中表达的蛋白质。在对TRPA1的研究中,发现了它作为各种调节剂的通用和多模式传感器的独特生物学作用。本研究的目的是搜索和概括关于TRPA1作为一种通用疼痛和炎症传感器的结构特征和分子决定因素、激活机制、作用和调节的信息,以及该靶点的激活剂和拮抗剂的性质及其治疗潜力。材料和方法:本文概述了TRPA1及其调节剂的科学研究结果,以及从发现这些通道到现在的药理学潜力,重点是过去十年。结果和讨论:关于TRPA1的表达、结构特征和分子决定因素、激活机制和作用的主要收集数据表明,TRPA1是机体对不利外源和内源性因素的主要反应中的一个普遍和不稳定的因素。无论刺激的性质如何,TRPA1通道的过度刺激都会导致疼痛、炎症、瘙痒、水肿和其他改变表现,因此TRPA1阻断剂可用于治疗伴随这些病理条件的各种疾病。目前,TRPA1拮抗剂正在积极寻找和研究中,过去14年的高专利活性证明了这一点;然而,TRPA1阻断剂的分子作用机制和药理学性质仍然研究不足。结论:获得关于TRPA1的新信息将有助于开发其调节剂,这些调节剂可以成为新一代有前途的镇痛药、抗炎药、支气管扩张剂和治疗心血管疾病的药物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Research Results in Pharmacology
Research Results in Pharmacology Medicine-Pharmacology (medical)
CiteScore
1.50
自引率
0.00%
发文量
32
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信