{"title":"On Quasi Steinberg Characters of Complex Reflection Groups","authors":"Ashish Mishra, Digjoy Paul, Pooja Singla","doi":"10.1007/s10468-023-10201-5","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>G</i> be a finite group and <i>p</i> be a prime number dividing the order of <i>G</i>. An irreducible character <i>χ</i> of <i>G</i> is called a quasi <i>p</i>-Steinberg character if <i>χ</i>(<i>g</i>) is nonzero for every <i>p</i>-regular element <i>g</i> in <i>G</i>. In this paper, we classify the quasi <i>p</i>-Steinberg characters of complex reflection groups <i>G</i>(<i>r</i>,<i>q</i>,<i>n</i>) and exceptional complex reflection groups. In particular, we obtain this classification for Weyl groups of type <i>B</i><sub><i>n</i></sub> and type <i>D</i><sub><i>n</i></sub>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10468-023-10201-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Let G be a finite group and p be a prime number dividing the order of G. An irreducible character χ of G is called a quasi p-Steinberg character if χ(g) is nonzero for every p-regular element g in G. In this paper, we classify the quasi p-Steinberg characters of complex reflection groups G(r,q,n) and exceptional complex reflection groups. In particular, we obtain this classification for Weyl groups of type Bn and type Dn.