Giant component of the soft random geometric graph

Pub Date : 2022-01-01 DOI:10.1214/22-ecp491
M. Penrose
{"title":"Giant component of the soft random geometric graph","authors":"M. Penrose","doi":"10.1214/22-ecp491","DOIUrl":null,"url":null,"abstract":"Consider a 2-dimensional soft random geometric graph G ( λ, s, φ ), obtained by placing a Poisson( λs 2 ) number of vertices uniformly at random in a square of side s , with edges placed between each pair x, y of vertices with probability φ ( (cid:107) x − y (cid:107) ), where φ : R + → [0 , 1] is a finite-range connection function. This paper is concerned with the asymptotic behaviour of the graph G ( λ, s, φ ) in the large- s limit with ( λ, φ ) fixed. We prove that the proportion of vertices in the largest component converges in probability to the percolation probability for the corresponding random connection model, which is a random graph defined similarly for a Poisson process on the whole plane. We do not cover the case where λ equals the critical value λ c ( φ ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Consider a 2-dimensional soft random geometric graph G ( λ, s, φ ), obtained by placing a Poisson( λs 2 ) number of vertices uniformly at random in a square of side s , with edges placed between each pair x, y of vertices with probability φ ( (cid:107) x − y (cid:107) ), where φ : R + → [0 , 1] is a finite-range connection function. This paper is concerned with the asymptotic behaviour of the graph G ( λ, s, φ ) in the large- s limit with ( λ, φ ) fixed. We prove that the proportion of vertices in the largest component converges in probability to the percolation probability for the corresponding random connection model, which is a random graph defined similarly for a Poisson process on the whole plane. We do not cover the case where λ equals the critical value λ c ( φ ).
分享
查看原文
软随机几何图的巨分量
考虑一个二维软随机几何图G(λ,s,φ),通过将泊松(λs2)个顶点均匀随机地放置在边s的正方形中,边放置在每对x,y之间,概率为φ((cid:107)x−y(cid:107)),其中φ:R+→ [0,1]是一个有限范围连接函数。本文研究了图G(λ,s,φ)在(λ,φ)固定的大s极限下的渐近性态。我们证明了最大分量中顶点的比例在概率上收敛于相应随机连接模型的渗流概率,该模型是一个类似于整个平面上泊松过程定义的随机图。我们不涵盖λ等于临界值λc(φ)的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信