{"title":"Giant component of the soft random geometric graph","authors":"M. Penrose","doi":"10.1214/22-ecp491","DOIUrl":null,"url":null,"abstract":"Consider a 2-dimensional soft random geometric graph G ( λ, s, φ ), obtained by placing a Poisson( λs 2 ) number of vertices uniformly at random in a square of side s , with edges placed between each pair x, y of vertices with probability φ ( (cid:107) x − y (cid:107) ), where φ : R + → [0 , 1] is a finite-range connection function. This paper is concerned with the asymptotic behaviour of the graph G ( λ, s, φ ) in the large- s limit with ( λ, φ ) fixed. We prove that the proportion of vertices in the largest component converges in probability to the percolation probability for the corresponding random connection model, which is a random graph defined similarly for a Poisson process on the whole plane. We do not cover the case where λ equals the critical value λ c ( φ ).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/22-ecp491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Consider a 2-dimensional soft random geometric graph G ( λ, s, φ ), obtained by placing a Poisson( λs 2 ) number of vertices uniformly at random in a square of side s , with edges placed between each pair x, y of vertices with probability φ ( (cid:107) x − y (cid:107) ), where φ : R + → [0 , 1] is a finite-range connection function. This paper is concerned with the asymptotic behaviour of the graph G ( λ, s, φ ) in the large- s limit with ( λ, φ ) fixed. We prove that the proportion of vertices in the largest component converges in probability to the percolation probability for the corresponding random connection model, which is a random graph defined similarly for a Poisson process on the whole plane. We do not cover the case where λ equals the critical value λ c ( φ ).