{"title":"Effects of light thermal treatments on the color, hygroscopity and dimensional stability of wood","authors":"X. Y. Liu, Xinwei Tu, Mihaela Liu","doi":"10.37763/WR.1336-4561/66.1.95104","DOIUrl":null,"url":null,"abstract":"Ailanthus wood (Ailanthus desf.) was thermally treated at three different low temperatures (140, 160, 180°C) for 2 and 4 h in order to investigate the effects on wood color, hygroscopity and dimensional stability. Results indicate that mass loss increased following the treatments, while equilibrium moisture content decreased from 11.86% to 9.88% for the 180°C and 4 h treatment. Moreover, improvements in the dimension stability were observed for post-treatment samples. The thermal treatment induced color changes in the Ailanthus wood, with a significant reduction in the lightness, yet the redness and yellowness exhibited minimal changes. FITR spectra of the thermally treated wood suggest that the heat treatment resulted in the deacetylation of hemicellulose. These results help to conclude that thermal treating temperature under 160°C can improve wood dimensional stability and maintain original color.","PeriodicalId":23786,"journal":{"name":"Wood Research","volume":"66 1","pages":"95-104"},"PeriodicalIF":0.9000,"publicationDate":"2021-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Wood Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.37763/WR.1336-4561/66.1.95104","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, PAPER & WOOD","Score":null,"Total":0}
引用次数: 13
Abstract
Ailanthus wood (Ailanthus desf.) was thermally treated at three different low temperatures (140, 160, 180°C) for 2 and 4 h in order to investigate the effects on wood color, hygroscopity and dimensional stability. Results indicate that mass loss increased following the treatments, while equilibrium moisture content decreased from 11.86% to 9.88% for the 180°C and 4 h treatment. Moreover, improvements in the dimension stability were observed for post-treatment samples. The thermal treatment induced color changes in the Ailanthus wood, with a significant reduction in the lightness, yet the redness and yellowness exhibited minimal changes. FITR spectra of the thermally treated wood suggest that the heat treatment resulted in the deacetylation of hemicellulose. These results help to conclude that thermal treating temperature under 160°C can improve wood dimensional stability and maintain original color.
期刊介绍:
Wood Research publishes original papers aimed at recent advances in all branches of wood science (biology, chemistry, wood physics and mechanics, mechanical and chemical processing etc.). Submission of the manuscript implies that it has not been published before and it is not under consideration for publication elsewhere.