The integer point transform as a complete invariant

Q3 Mathematics
S. Robins
{"title":"The integer point transform as a complete invariant","authors":"S. Robins","doi":"10.46298/cm.11218","DOIUrl":null,"url":null,"abstract":"The integer point transform $\\sigma_\\PP$ is an important invariant of a\nrational polytope $\\PP$, and here we show that it is a complete invariant. We\nprove that it is only necessary to evaluate $\\sigma_\\PP$ at one algebraic point\nin order to uniquely determine $\\PP$, by employing the Lindemann-Weierstrass\ntheorem. Similarly, we prove that it is only necessary to evaluate the Fourier\ntransform of a rational polytope $\\PP$ at a single algebraic point, in order to\nuniquely determine $\\PP$. We prove that identical uniqueness results also hold\nfor integer cones.\n In addition, by relating the integer point transform to finite Fourier\ntransforms, we show that a finite number of \\emph{integer point evaluations} of\n$\\sigma_\\PP$ suffice in order to uniquely determine $\\PP$. We also give an\nequivalent condition for central symmetry of a finite point set, in terms of\nthe integer point transform, and prove some facts about its local maxima. Most\nof the results are proven for arbitrary finite sets of integer points in\n$\\R^d$.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.11218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

Abstract

The integer point transform $\sigma_\PP$ is an important invariant of a rational polytope $\PP$, and here we show that it is a complete invariant. We prove that it is only necessary to evaluate $\sigma_\PP$ at one algebraic point in order to uniquely determine $\PP$, by employing the Lindemann-Weierstrass theorem. Similarly, we prove that it is only necessary to evaluate the Fourier transform of a rational polytope $\PP$ at a single algebraic point, in order to uniquely determine $\PP$. We prove that identical uniqueness results also hold for integer cones. In addition, by relating the integer point transform to finite Fourier transforms, we show that a finite number of \emph{integer point evaluations} of $\sigma_\PP$ suffice in order to uniquely determine $\PP$. We also give an equivalent condition for central symmetry of a finite point set, in terms of the integer point transform, and prove some facts about its local maxima. Most of the results are proven for arbitrary finite sets of integer points in $\R^d$.
作为完全不变量的整数点变换
整数点变换$\sigma_\PP$是无数多面体$\PP$的一个重要不变量,本文证明了它是一个完全不变量。我们利用lindemann - weierstrass定理证明了为了唯一地确定$\PP$,只需要在一个代数点求$\sigma_\PP$的值。同样地,我们证明了只需要求有理多面体$\PP$在单个代数点上的傅里叶变换,就可以唯一地确定$\PP$。我们证明了整数锥的唯一性结果也成立。此外,通过将整数点变换与有限傅里叶变换联系起来,我们证明了$\sigma_\PP$的有限个数的\emph{整数点}求值足以唯一地确定$\PP$。给出了有限点集中心对称的一个等价条件,并用整数点变换证明了有限点集的局部极大值。大多数结果在$\R^d$中证明了任意整数点的有限集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信