{"title":"Modelling and analysis of tool deflections in tailored micro end mills","authors":"S. Oliaei, Y. Karpat","doi":"10.1504/IJMMS.2019.097843","DOIUrl":null,"url":null,"abstract":"The deflection of micro end mills has a detrimental effect on surface quality of the machined micro components and adversely affects the achievable dimensional and geometrical tolerances. In this paper, the analysis and modelling of tool deflections of tailored micro end mills have been considered. The tool deflections are obtained using analytical models as well as finite element simulations and verified using a dedicated measurement setup, which uses a capacitive sensor with a nanometre resolution for static tool deflection measurements. The optimisation of the micro end mill geometry has been performed to determine optimum neck taper angle and transition radius of the single edge micro end mill to have minimum tool deflections. With the developed model, tool failure predictions for a given process parameter set can be performed and it can be used for better micro milling process planning.","PeriodicalId":39429,"journal":{"name":"International Journal of Mechatronics and Manufacturing Systems","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1504/IJMMS.2019.097843","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechatronics and Manufacturing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJMMS.2019.097843","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 4
Abstract
The deflection of micro end mills has a detrimental effect on surface quality of the machined micro components and adversely affects the achievable dimensional and geometrical tolerances. In this paper, the analysis and modelling of tool deflections of tailored micro end mills have been considered. The tool deflections are obtained using analytical models as well as finite element simulations and verified using a dedicated measurement setup, which uses a capacitive sensor with a nanometre resolution for static tool deflection measurements. The optimisation of the micro end mill geometry has been performed to determine optimum neck taper angle and transition radius of the single edge micro end mill to have minimum tool deflections. With the developed model, tool failure predictions for a given process parameter set can be performed and it can be used for better micro milling process planning.
期刊介绍:
IJMMS publishes refereed quality papers in the broad field of mechatronics and manufacturing systems with a special emphasis on research and development in the modern engineering of advanced manufacturing processes and systems. IJMMS fosters information exchange and discussion on all aspects of mechatronics (computers, electrical and mechanical engineering) with applications in manufacturing processes and systems.