LEXICOGRAPHIC PROBLEMS OF CONVEX OPTIMIZATION: SOLVABILITY AND OPTIMALITY CONDITIONS, CUTTING PLANE METHOD

Q3 Engineering
N. Semenova, Maria M. Lomaga, V. Semenov
{"title":"LEXICOGRAPHIC PROBLEMS OF CONVEX OPTIMIZATION: SOLVABILITY AND OPTIMALITY CONDITIONS, CUTTING PLANE METHOD","authors":"N. Semenova, Maria M. Lomaga, V. Semenov","doi":"10.34229/0572-2691-2021-1-3","DOIUrl":null,"url":null,"abstract":"The lexicographic approach for solving multicriteria problems consists in the strict ordering of criteria concerning relative importance and allows to obtain optimization of more important criterion due to any losses of all another, to the criteria of less importance. Hence, a lot of problems including the ones of com­plex system optimization, of stochastic programming under risk, of dynamic character, etc. may be presented in the form of lexicographic problems of opti­mization. We have revealed conditions of existence and optimality of solutions of multicriteria problems of lexicographic optimization with an unbounded convex set of feasible solutions on the basis of applying properties of a recession cone of a convex feasible set, the cone which puts in order lexicographically a feasible set with respect to optimization criteria and local tent built at the boundary points of the feasible set. The properties of lexicographic optimal solutions are described. Received conditions and properties may be successfully used while developing algorithms for finding optimal solutions of mentioned problems of lexicographic optimization. A method of finding lexicographic of optimal solutions of convex lexicographic problems is built and grounded on the basis of ideas of method of linearization and Kelley cutting-plane method.","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/0572-2691-2021-1-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The lexicographic approach for solving multicriteria problems consists in the strict ordering of criteria concerning relative importance and allows to obtain optimization of more important criterion due to any losses of all another, to the criteria of less importance. Hence, a lot of problems including the ones of com­plex system optimization, of stochastic programming under risk, of dynamic character, etc. may be presented in the form of lexicographic problems of opti­mization. We have revealed conditions of existence and optimality of solutions of multicriteria problems of lexicographic optimization with an unbounded convex set of feasible solutions on the basis of applying properties of a recession cone of a convex feasible set, the cone which puts in order lexicographically a feasible set with respect to optimization criteria and local tent built at the boundary points of the feasible set. The properties of lexicographic optimal solutions are described. Received conditions and properties may be successfully used while developing algorithms for finding optimal solutions of mentioned problems of lexicographic optimization. A method of finding lexicographic of optimal solutions of convex lexicographic problems is built and grounded on the basis of ideas of method of linearization and Kelley cutting-plane method.
凸优化的字典问题:可解性和最优性条件,割平面法
解决多准则问题的词典编纂方法包括对涉及相对重要性的准则进行严格排序,并允许由于所有其他准则的任何损失而对更重要的准则进行优化,以达到不太重要的准则。因此,许多问题,包括复杂系统优化问题、风险下的随机规划问题、动态特性问题等,都可能以优化的字典问题的形式出现。在应用凸可行集的凹锥性质的基础上,我们揭示了可行解的无界凸集字典优化的多准则问题解的存在性和最优性条件,根据优化准则按字典顺序排列可行集的锥,以及在可行集的边界点建立的局部帐篷。描述了字典最优解的性质。接收到的条件和性质可以在开发用于找到字典优化的上述问题的最优解的算法时被成功地使用。在线性化方法和Kelley割平面法思想的基础上,建立了一种求凸字典问题最优解的字典图的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Automation and Information Sciences
Journal of Automation and Information Sciences AUTOMATION & CONTROL SYSTEMS-
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信