Ehab A. Abdelrahman, Faisal K. Algethami, H. AlSalem, Mona S. Binkadem, M. Khairy, F. Saad, G. S. El-Sayyad, Z. Alqahtani
{"title":"Efficient Disposal of Rhodamine 6G and Acid Orange 10 Dyes from Aqueous Media Using ZrO2/CdMn2O4/CdO as Novel and Facilely Synthesized Nanocomposites","authors":"Ehab A. Abdelrahman, Faisal K. Algethami, H. AlSalem, Mona S. Binkadem, M. Khairy, F. Saad, G. S. El-Sayyad, Z. Alqahtani","doi":"10.3390/inorganics11080333","DOIUrl":null,"url":null,"abstract":"It is essential to remove rhodamine 6G and acid orange 10 dyes from contaminated water because they can induce cancer and irritate the lungs, skin, mucous, membranes, and eyes. Hence, in the current work, the Pechini sol–gel method was used for the facile synthesis of ZrO2/CdMn2O4/CdO as novel nanocomposites at 600 and 800 °C. The synthesized nanocomposites were used as novel adsorbents for the efficient removal of rhodamine 6G and acid orange 10 dyes from aqueous media. The nanocomposites, which were synthesized at 600 and 800 °C, were abbreviated as EK600 and EK800, respectively. The synthesized nanocomposites were characterized by EDS, XRD, N2 adsorption/desorption analyzer, and FE-SEM. The patterns of XRD showed that the average crystal size of the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm, respectively. Additionally, the images of FE-SEM showed that the surface of the EK600 nanocomposite consists of spherical, polyhedral, and rod shapes with an average grain size of 99.36 nm. Additionally, the surface of the EK800 nanocomposite consists of polyhedral and spherical shapes with an average grain size of 143.23 nm. In addition, the BET surface area of the EK600 and EK800 nanocomposites is 46.33 and 38.49 m2/g, respectively. The optimal conditions to achieve the highest removal of rhodamine 6G and acid orange 10 dyes are pH = 8, contact time = 24 min, and temperature = 298 kelvin. The greatest removal capacity of the EK600 and EK800 adsorbents towards rhodamine 6G dye is 311.53 and 250.63 mg/g, respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents towards acid orange 10 dye is 335.57 and 270.27 mg/g, respectively. The removal of rhodamine 6G and acid orange 10 dyes using the EK600 and EK800 adsorbents is spontaneous, exothermic, follows the Langmuir adsorption isotherm, and fits well with the pseudo-first-order kinetic model.","PeriodicalId":13572,"journal":{"name":"Inorganics","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2023-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/inorganics11080333","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 3
Abstract
It is essential to remove rhodamine 6G and acid orange 10 dyes from contaminated water because they can induce cancer and irritate the lungs, skin, mucous, membranes, and eyes. Hence, in the current work, the Pechini sol–gel method was used for the facile synthesis of ZrO2/CdMn2O4/CdO as novel nanocomposites at 600 and 800 °C. The synthesized nanocomposites were used as novel adsorbents for the efficient removal of rhodamine 6G and acid orange 10 dyes from aqueous media. The nanocomposites, which were synthesized at 600 and 800 °C, were abbreviated as EK600 and EK800, respectively. The synthesized nanocomposites were characterized by EDS, XRD, N2 adsorption/desorption analyzer, and FE-SEM. The patterns of XRD showed that the average crystal size of the EK600 and EK800 nanocomposites is 68.25 and 85.32 nm, respectively. Additionally, the images of FE-SEM showed that the surface of the EK600 nanocomposite consists of spherical, polyhedral, and rod shapes with an average grain size of 99.36 nm. Additionally, the surface of the EK800 nanocomposite consists of polyhedral and spherical shapes with an average grain size of 143.23 nm. In addition, the BET surface area of the EK600 and EK800 nanocomposites is 46.33 and 38.49 m2/g, respectively. The optimal conditions to achieve the highest removal of rhodamine 6G and acid orange 10 dyes are pH = 8, contact time = 24 min, and temperature = 298 kelvin. The greatest removal capacity of the EK600 and EK800 adsorbents towards rhodamine 6G dye is 311.53 and 250.63 mg/g, respectively. Additionally, the greatest removal capacity of the EK600 and EK800 adsorbents towards acid orange 10 dye is 335.57 and 270.27 mg/g, respectively. The removal of rhodamine 6G and acid orange 10 dyes using the EK600 and EK800 adsorbents is spontaneous, exothermic, follows the Langmuir adsorption isotherm, and fits well with the pseudo-first-order kinetic model.
期刊介绍:
Inorganics is an open access journal that covers all aspects of inorganic chemistry research. Topics include but are not limited to: synthesis and characterization of inorganic compounds, complexes and materials structure and bonding in inorganic molecular and solid state compounds spectroscopic, magnetic, physical and chemical properties of inorganic compounds chemical reactivity, physical properties and applications of inorganic compounds and materials mechanisms of inorganic reactions organometallic compounds inorganic cluster chemistry heterogenous and homogeneous catalytic reactions promoted by inorganic compounds thermodynamics and kinetics of significant new and known inorganic compounds supramolecular systems and coordination polymers bio-inorganic chemistry and applications of inorganic compounds in biological systems and medicine environmental and sustainable energy applications of inorganic compounds and materials MD