Mubbashar Nazeer, Mohammed Z. Alqarni, Farooq Hussain, S. Saleem
{"title":"Computational analysis of multiphase flow of non-Newtonian fluid through inclined channel: heat transfer analysis with perturbation method","authors":"Mubbashar Nazeer, Mohammed Z. Alqarni, Farooq Hussain, S. Saleem","doi":"10.1007/s40571-023-00569-y","DOIUrl":null,"url":null,"abstract":"<div><p>The present investigation is based on the two-phase flow of a non-Newtonian fluid through a uniform channel with heat transfer. Stress tensor of third-grade fluid is taken into account to treat as non-Newtonian fluid. Two different types of viscous suspensions are formed with the tiny size Hafnium and crystal particles, respectively. Owing to the high magnetic susceptibility of the Hafnium metallic particles magnetic effects are applied, as well. Each magnetohydrodynamics bi-phase flow is caused, due to gravitational force. An asymptotic solution is obtained with the help of the “Regular perturbation method,” for the set nonlinear and coupled differential equations. A detailed parametric study is carried out to analyze the effective contribution of significant parameters and quantities. It is inferred that the strong magnetic effects and dominant viscous dissipation introduce additional thermal energy to the multiphase flow. Moreover, highly viscous multiphase suspensions are suitable in chemical industries to manufacture such paints and emulsions which contain small polymer particles.</p></div>","PeriodicalId":524,"journal":{"name":"Computational Particle Mechanics","volume":"10 5","pages":"1371 - 1381"},"PeriodicalIF":2.8000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40571-023-00569-y.pdf","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Particle Mechanics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s40571-023-00569-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 9
Abstract
The present investigation is based on the two-phase flow of a non-Newtonian fluid through a uniform channel with heat transfer. Stress tensor of third-grade fluid is taken into account to treat as non-Newtonian fluid. Two different types of viscous suspensions are formed with the tiny size Hafnium and crystal particles, respectively. Owing to the high magnetic susceptibility of the Hafnium metallic particles magnetic effects are applied, as well. Each magnetohydrodynamics bi-phase flow is caused, due to gravitational force. An asymptotic solution is obtained with the help of the “Regular perturbation method,” for the set nonlinear and coupled differential equations. A detailed parametric study is carried out to analyze the effective contribution of significant parameters and quantities. It is inferred that the strong magnetic effects and dominant viscous dissipation introduce additional thermal energy to the multiphase flow. Moreover, highly viscous multiphase suspensions are suitable in chemical industries to manufacture such paints and emulsions which contain small polymer particles.
期刊介绍:
GENERAL OBJECTIVES: Computational Particle Mechanics (CPM) is a quarterly journal with the goal of publishing full-length original articles addressing the modeling and simulation of systems involving particles and particle methods. The goal is to enhance communication among researchers in the applied sciences who use "particles'''' in one form or another in their research.
SPECIFIC OBJECTIVES: Particle-based materials and numerical methods have become wide-spread in the natural and applied sciences, engineering, biology. The term "particle methods/mechanics'''' has now come to imply several different things to researchers in the 21st century, including:
(a) Particles as a physical unit in granular media, particulate flows, plasmas, swarms, etc.,
(b) Particles representing material phases in continua at the meso-, micro-and nano-scale and
(c) Particles as a discretization unit in continua and discontinua in numerical methods such as
Discrete Element Methods (DEM), Particle Finite Element Methods (PFEM), Molecular Dynamics (MD), and Smoothed Particle Hydrodynamics (SPH), to name a few.