On the Cocartesian Image of Preorders and Equivalence Relations in Regular Categories

IF 0.6 4区 数学 Q3 MATHEMATICS
Dominique Bourn
{"title":"On the Cocartesian Image of Preorders and Equivalence Relations in Regular Categories","authors":"Dominique Bourn","doi":"10.1007/s10485-022-09686-w","DOIUrl":null,"url":null,"abstract":"<div><p>In a regular category <span>\\(\\mathbb {E}\\)</span>, the direct image along a regular epimorphism <i>f</i> of a preorder is not a preorder in general. In <i>Set</i>, its best preorder approximation is then its cocartesian image above <i>f</i>. In a regular category, the existence of such a cocartesian image above <i>f</i> of a preorder <i>S</i> is actually equivalent to the existence of the supremum <span>\\(R[f]\\vee S\\)</span> among the preorders. We investigate here some conditions ensuring the existence of these cocartesian images or equivalently of these suprema. They apply to two very dissimilar contexts: any topos <span>\\(\\mathbb {E}\\)</span> with suprema of countable chains of subobjects or any <i>n</i>-permutable regular category.</p></div>","PeriodicalId":7952,"journal":{"name":"Applied Categorical Structures","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10485-022-09686-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Categorical Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10485-022-09686-w","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In a regular category \(\mathbb {E}\), the direct image along a regular epimorphism f of a preorder is not a preorder in general. In Set, its best preorder approximation is then its cocartesian image above f. In a regular category, the existence of such a cocartesian image above f of a preorder S is actually equivalent to the existence of the supremum \(R[f]\vee S\) among the preorders. We investigate here some conditions ensuring the existence of these cocartesian images or equivalently of these suprema. They apply to two very dissimilar contexts: any topos \(\mathbb {E}\) with suprema of countable chains of subobjects or any n-permutable regular category.

关于正则范畴中序的Cocartesian映象和等价关系
在一个规则范畴\(\mathbb {E}\)中,一个预定序的沿规则上射的直接象一般不是预定序。在Set中,它的最佳预阶近似就是它在f之上的直角图像。在常规范畴中,一个S的预阶在f之上的直角图像的存在实际上等价于该预阶中最优\(R[f]\vee S\)的存在。我们在这里研究了保证这些笛卡尔象或等价的这些上象存在的一些条件。它们适用于两个非常不同的上下文:具有子对象的可数链的上界的任何拓扑\(\mathbb {E}\)或任何n-permutable正则范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.30
自引率
16.70%
发文量
29
审稿时长
>12 weeks
期刊介绍: Applied Categorical Structures focuses on applications of results, techniques and ideas from category theory to mathematics, physics and computer science. These include the study of topological and algebraic categories, representation theory, algebraic geometry, homological and homotopical algebra, derived and triangulated categories, categorification of (geometric) invariants, categorical investigations in mathematical physics, higher category theory and applications, categorical investigations in functional analysis, in continuous order theory and in theoretical computer science. In addition, the journal also follows the development of emerging fields in which the application of categorical methods proves to be relevant. Applied Categorical Structures publishes both carefully refereed research papers and survey papers. It promotes communication and increases the dissemination of new results and ideas among mathematicians and computer scientists who use categorical methods in their research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信