Penggunaan DTM Presisi dari Fotogrametri UAV untuk Analisa Bencana Longsor Menggunakan Sistem Informasi Geografis

Vikanisa Rahmadany, Martinus Edwin Tjahjadi, F. Agustina
{"title":"Penggunaan DTM Presisi dari Fotogrametri UAV untuk Analisa Bencana Longsor Menggunakan Sistem Informasi Geografis","authors":"Vikanisa Rahmadany, Martinus Edwin Tjahjadi, F. Agustina","doi":"10.34312/jgeosrev.v4i2.12908","DOIUrl":null,"url":null,"abstract":"The morphologies of the Pandansari Village (Ngantang District, Malang Regency, Indonesia) are vulnerable to landslide disasters that may damage human properties, infrastructures, and even fatalities. Landslide disaster mitigation can be carried out by conducting disaster-prone mapping utilizing Unmanned Aerial Vehicle (UAV) photogrammetry along with geographic information systems (GIS) to produce precise Digital Elevation Model/Digital Terrain Model (DEM/DTM). The purpose of this study is to analyze areas prone to landslides using precision DTM data from UAV technology integrated with geospatial data. DEM is widely used for disaster mapping applications in the form of DTM, representing the ground surface. DTM can be generated from UAV images with photogrammetric processing and additional procedures for removing non-ground objects. This study utilizes PCI Geomatics software to remove vegetation and human-made objects off the ground surfaces semi-automatically. The evaluation revealed that LE 90% of the DTM has only deviated at approximately 0.81 m. This value follows the introductory map geometric accuracy provisions according to BIG No.15 of 2014 for a scale of 1:2500 in class 2. The landslide hazard map classifications using the landslide estimation Puslittanak are dominated by a high classification landslide hazard level with an area of 20.1 ha (48%). In addition, the validation of the landslide-prone map using the accuracy assessment method obtained a percentage of 83%.","PeriodicalId":34761,"journal":{"name":"Jambura Geoscience Review","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jambura Geoscience Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34312/jgeosrev.v4i2.12908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The morphologies of the Pandansari Village (Ngantang District, Malang Regency, Indonesia) are vulnerable to landslide disasters that may damage human properties, infrastructures, and even fatalities. Landslide disaster mitigation can be carried out by conducting disaster-prone mapping utilizing Unmanned Aerial Vehicle (UAV) photogrammetry along with geographic information systems (GIS) to produce precise Digital Elevation Model/Digital Terrain Model (DEM/DTM). The purpose of this study is to analyze areas prone to landslides using precision DTM data from UAV technology integrated with geospatial data. DEM is widely used for disaster mapping applications in the form of DTM, representing the ground surface. DTM can be generated from UAV images with photogrammetric processing and additional procedures for removing non-ground objects. This study utilizes PCI Geomatics software to remove vegetation and human-made objects off the ground surfaces semi-automatically. The evaluation revealed that LE 90% of the DTM has only deviated at approximately 0.81 m. This value follows the introductory map geometric accuracy provisions according to BIG No.15 of 2014 for a scale of 1:2500 in class 2. The landslide hazard map classifications using the landslide estimation Puslittanak are dominated by a high classification landslide hazard level with an area of 20.1 ha (48%). In addition, the validation of the landslide-prone map using the accuracy assessment method obtained a percentage of 83%.
使用使用地理信息系统进行无人机摄影测量分析的精确DTM
Pandansari村(印尼玛琅县的Ngantang区)的地形很容易受到滑坡灾害的影响,这可能会破坏人类财产,基础设施,甚至造成人员伤亡。利用无人机(UAV)摄影测量技术和地理信息系统(GIS)进行灾害易发测绘,生成精确的数字高程模型/数字地形模型(DEM/DTM),可以进行滑坡减灾。本研究的目的是利用无人机技术与地理空间数据相结合的精确DTM数据来分析滑坡易发地区。DEM以DTM的形式广泛用于灾害制图应用,DTM代表地表。DTM可以用摄影测量处理和用于去除非地面物体的附加程序从UAV图像生成。本研究利用PCI Geomatics软件对地表植被和人造物体进行半自动去除。评估显示,90%的DTM的LE仅偏离约0.81 m。该值遵循2014年BIG No.15关于2级1:2500比例尺的介绍性地图几何精度规定。使用滑坡估计Puslittanak的滑坡危险性图分类以高分类滑坡危险性等级为主,面积为20.1 ha(48%)。此外,利用准确度评估方法对滑坡易发图的验证率达到83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
11
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信