{"title":"Dopamine-mimetic-coated polyamidoamine-functionalized Fe3O4 nanoparticles for safe and efficient gene delivery","authors":"Liang Liu, Chaobing Liu, Zhaojun Yang, Yiran Chen, Xin Chen, Jintao Guan","doi":"10.1007/s11706-023-0637-9","DOIUrl":null,"url":null,"abstract":"<div><p>Fe<sub>3</sub>O<sub>4</sub> nanoparticles (NPs) are widely used in the construction of drug and gene delivery vectors because of their particular physicochemical properties. Surface modification can not only reduce the cytotoxicity of Fe<sub>3</sub>O<sub>4</sub>, but also further improve the biocompatibility and delivery efficiency. In this work, firstly, polydopamine (PDA)-coated Fe<sub>3</sub>O<sub>4</sub> NPs (named Fe<sub>3</sub>O<sub>4</sub>@PDA) were prepared by using the self-polymerization characteristics of dopamine in alkaline environment. Then, polyamidoamine (PAMAM) was modified by the Michael addition reaction to prepare water-soluble core—shell magnetic NPs of Fe<sub>3</sub>O<sub>4</sub>@PDA@PAMAM, and its potential as gene vector was further evaluated. The results revealed that Fe<sub>3</sub>O<sub>4</sub>@PDA@PAMAM had the ability to condense and protect DNA, and showed lower cytotoxicity, higher cell uptake and transfection efficiency than those of PAMAM. It has the potential to become a magnetic targeted gene vector for further study.</p></div>","PeriodicalId":572,"journal":{"name":"Frontiers of Materials Science","volume":"17 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Materials Science","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11706-023-0637-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Fe3O4 nanoparticles (NPs) are widely used in the construction of drug and gene delivery vectors because of their particular physicochemical properties. Surface modification can not only reduce the cytotoxicity of Fe3O4, but also further improve the biocompatibility and delivery efficiency. In this work, firstly, polydopamine (PDA)-coated Fe3O4 NPs (named Fe3O4@PDA) were prepared by using the self-polymerization characteristics of dopamine in alkaline environment. Then, polyamidoamine (PAMAM) was modified by the Michael addition reaction to prepare water-soluble core—shell magnetic NPs of Fe3O4@PDA@PAMAM, and its potential as gene vector was further evaluated. The results revealed that Fe3O4@PDA@PAMAM had the ability to condense and protect DNA, and showed lower cytotoxicity, higher cell uptake and transfection efficiency than those of PAMAM. It has the potential to become a magnetic targeted gene vector for further study.
期刊介绍:
Frontiers of Materials Science is a peer-reviewed international journal that publishes high quality reviews/mini-reviews, full-length research papers, and short Communications recording the latest pioneering studies on all aspects of materials science. It aims at providing a forum to promote communication and exchange between scientists in the worldwide materials science community.
The subjects are seen from international and interdisciplinary perspectives covering areas including (but not limited to):
Biomaterials including biomimetics and biomineralization;
Nano materials;
Polymers and composites;
New metallic materials;
Advanced ceramics;
Materials modeling and computation;
Frontier materials synthesis and characterization;
Novel methods for materials manufacturing;
Materials performance;
Materials applications in energy, information and biotechnology.