Multiple solutions for nonhomogeneous Schrodinger-Poisson system with p-Laplacian

IF 0.8 4区 数学 Q2 MATHEMATICS
Lan-Xin Huang, Jiabao Su
{"title":"Multiple solutions for nonhomogeneous Schrodinger-Poisson system with p-Laplacian","authors":"Lan-Xin Huang, Jiabao Su","doi":"10.58997/ejde.2023.28","DOIUrl":null,"url":null,"abstract":"This article concerns the existence of solutions to the Schrodinger-Poisson system $$\\displaylines{ -\\Delta_p u+|u|^{p-2}u+\\lambda\\phi u=|u|^{q-2}u+h(x) \\quad \\hbox{in }\\mathbb{R}^3,\\\\ -\\Delta \\phi=u^2 \\quad \\hbox{in }\\mathbb{R}^3, }$$ where \\( 4/3 < p < 12/5 \\), \\( p < q < p^{*}=3p/(3-p) \\), \\(\\Delta_p u =\\hbox{div}(|\\nabla u|^{p-2}\\nabla u)\\), \\(\\lambda >0\\), and \\(h \\not= 0\\). The multiplicity results are obtained by using Ekeland's variational principle and the mountain pass theorem.","PeriodicalId":49213,"journal":{"name":"Electronic Journal of Differential Equations","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.58997/ejde.2023.28","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article concerns the existence of solutions to the Schrodinger-Poisson system $$\displaylines{ -\Delta_p u+|u|^{p-2}u+\lambda\phi u=|u|^{q-2}u+h(x) \quad \hbox{in }\mathbb{R}^3,\\ -\Delta \phi=u^2 \quad \hbox{in }\mathbb{R}^3, }$$ where \( 4/3 < p < 12/5 \), \( p < q < p^{*}=3p/(3-p) \), \(\Delta_p u =\hbox{div}(|\nabla u|^{p-2}\nabla u)\), \(\lambda >0\), and \(h \not= 0\). The multiplicity results are obtained by using Ekeland's variational principle and the mountain pass theorem.
具有p-拉普拉斯算子的非齐次薛定谔-泊松系统的多重解
本文讨论了薛定谔-泊松系统$$\displaylines{ -\Delta_p u+|u|^{p-2}u+\lambda\phi u=|u|^{q-2}u+h(x) \quad \hbox{in }\mathbb{R}^3,\\ -\Delta \phi=u^2 \quad \hbox{in }\mathbb{R}^3, }$$的解的存在性,其中\( 4/3 < p < 12/5 \), \( p < q < p^{*}=3p/(3-p) \), \(\Delta_p u =\hbox{div}(|\nabla u|^{p-2}\nabla u)\), \(\lambda >0\)和\(h \not= 0\)。利用Ekeland变分原理和山口定理得到了多重性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electronic Journal of Differential Equations
Electronic Journal of Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.50
自引率
14.30%
发文量
1
审稿时长
3 months
期刊介绍: All topics on differential equations and their applications (ODEs, PDEs, integral equations, delay equations, functional differential equations, etc.) will be considered for publication in Electronic Journal of Differential Equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信