On the choice of the optimal single order statistic in quantile estimation

Pub Date : 2022-08-02 DOI:10.1007/s10463-022-00845-3
Mariusz Bieniek, Luiza Pańczyk
{"title":"On the choice of the optimal single order statistic in quantile estimation","authors":"Mariusz Bieniek,&nbsp;Luiza Pańczyk","doi":"10.1007/s10463-022-00845-3","DOIUrl":null,"url":null,"abstract":"<div><p>We study the classical statistical problem of the estimation of quantiles by order statistics of the random sample. For fixed sample size, we determine the single order statistic which is the optimal estimator of a quantile of given order. We propose a totally new approach to the problem, since our optimality criterion is based on the use of nonparametric sharp upper and lower bounds on the bias of the estimation. First, we determine the explicit analytic expressions for the bounds, and then, we choose the order statistic for which the upper and lower bound are simultaneously as close to 0 as possible. The paper contains rigorously proved theoretical results which can be easily implemented in practise. This is also illustrated with numerical examples.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10463-022-00845-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We study the classical statistical problem of the estimation of quantiles by order statistics of the random sample. For fixed sample size, we determine the single order statistic which is the optimal estimator of a quantile of given order. We propose a totally new approach to the problem, since our optimality criterion is based on the use of nonparametric sharp upper and lower bounds on the bias of the estimation. First, we determine the explicit analytic expressions for the bounds, and then, we choose the order statistic for which the upper and lower bound are simultaneously as close to 0 as possible. The paper contains rigorously proved theoretical results which can be easily implemented in practise. This is also illustrated with numerical examples.

Abstract Image

分享
查看原文
分位数估计中最优单阶统计量的选择
研究了随机样本的有序统计量估计分位数的经典统计问题。对于固定样本量,我们确定了单阶统计量,它是给定阶数的分位数的最优估计量。我们提出了一种全新的方法来解决这个问题,因为我们的最优性准则是基于使用估计偏差的非参数尖锐上界和下界。首先,我们确定了边界的显式解析表达式,然后,我们选择了上界和下界同时尽可能接近0的阶统计量。本文包含了经过严格验证的理论结果,易于在实践中实现。并以数值算例加以说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信