The circulant hash revisited

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
Filipe Araújo, Samuel Neves
{"title":"The circulant hash revisited","authors":"Filipe Araújo, Samuel Neves","doi":"10.1515/jmc-2018-0054","DOIUrl":null,"url":null,"abstract":"Abstract At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over 𝔽2. In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring 𝔽2[x]/(xn + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer variants with practical implementation advantages.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"15 1","pages":"250 - 257"},"PeriodicalIF":0.5000,"publicationDate":"2020-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2018-0054","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2018-0054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract At ProvSec 2013, Minematsu presented the circulant hash, an almost-xor universal hash using only the xor and rotation operations. The circulant hash is a variant of Carter and Wegman’s H3 hash as well as Krawczyk’s Toeplitz hash, both of which are hashes based on matrix-vector multiplication over 𝔽2. In this paper we revisit the circulant hash and reinterpret it as a multiplication in the polynomial ring 𝔽2[x]/(xn + 1). This leads to simpler proofs, faster implementations in modern computer chips, and newer variants with practical implementation advantages.
再次访问循环哈希
在ProvSec 2013上,Minematsu提出了循环哈希,这是一种仅使用xor和旋转操作的几乎xor通用哈希。循环哈希是Carter和Wegman的H3哈希以及Krawczyk的Toeplitz哈希的一种变体,这两种哈希都是基于𝔽2上的矩阵向量乘法的哈希。在本文中,我们重新审视循环哈希,并将其重新解释为多项式环𝔽2[x]/(xn + 1)中的乘法。这导致更简单的证明,在现代计算机芯片中更快的实现,以及具有实际实现优势的新变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信