{"title":"Piezoelectric based V-shape cantilever beam design of energy harvester for biomedical applications","authors":"Joy Dewanjee, M. Islam","doi":"10.1556/1848.2023.00652","DOIUrl":null,"url":null,"abstract":"This research paper exhibits the design of a V-shaped cantilever beam as a micro Energy Harvester (EH) having Piezoelectric (PZT) as its energy source for biomedical applications. PZT source based materials have the ability to convert the mechanical energy into electrical energy. Low-power biomedical devices mostly operate using electrical energy (i.e. batteries). But batteries are treated as a bio-hazard due to the massive use of biomedical applications. To overcome this toxic bio-hazard, the proposed PZT based V-shaped cantilever beam of micro EH can solve the limitations. To perform the experimental work, the cantilever beam design parameters - length, width and thickness have been considered and simulated using COMSOL Multiphysics to get the resonant frequency of 156.19 Hz which is lower than previous research work. It was observed that the obtained lower resonant frequency can be converted into AC voltage (mV) using PZT material. To convert the output AC voltage (mV) into DC voltage, a circuit of an Ultra-Low-Power (ULP) EH will be designed in LTSPICE software. Finally, the integration of the both V-shape cantilever beam and the ULP EH circuit will be implemented in PCB hardware to generate the output power (10 µW), will be stored in super-capacitor for biomedical devices-pacemaker.","PeriodicalId":37508,"journal":{"name":"International Review of Applied Sciences and Engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Review of Applied Sciences and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1556/1848.2023.00652","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
This research paper exhibits the design of a V-shaped cantilever beam as a micro Energy Harvester (EH) having Piezoelectric (PZT) as its energy source for biomedical applications. PZT source based materials have the ability to convert the mechanical energy into electrical energy. Low-power biomedical devices mostly operate using electrical energy (i.e. batteries). But batteries are treated as a bio-hazard due to the massive use of biomedical applications. To overcome this toxic bio-hazard, the proposed PZT based V-shaped cantilever beam of micro EH can solve the limitations. To perform the experimental work, the cantilever beam design parameters - length, width and thickness have been considered and simulated using COMSOL Multiphysics to get the resonant frequency of 156.19 Hz which is lower than previous research work. It was observed that the obtained lower resonant frequency can be converted into AC voltage (mV) using PZT material. To convert the output AC voltage (mV) into DC voltage, a circuit of an Ultra-Low-Power (ULP) EH will be designed in LTSPICE software. Finally, the integration of the both V-shape cantilever beam and the ULP EH circuit will be implemented in PCB hardware to generate the output power (10 µW), will be stored in super-capacitor for biomedical devices-pacemaker.
期刊介绍:
International Review of Applied Sciences and Engineering is a peer reviewed journal. It offers a comprehensive range of articles on all aspects of engineering and applied sciences. It provides an international and interdisciplinary platform for the exchange of ideas between engineers, researchers and scholars within the academy and industry. It covers a wide range of application areas including architecture, building services and energetics, civil engineering, electrical engineering and mechatronics, environmental engineering, mechanical engineering, material sciences, applied informatics and management sciences. The aim of the Journal is to provide a location for reporting original research results having international focus with multidisciplinary content. The published papers provide solely new basic information for designers, scholars and developers working in the mentioned fields. The papers reflect the broad categories of interest in: optimisation, simulation, modelling, control techniques, monitoring, and development of new analysis methods, equipment and system conception.