Existence and upper semicontinuity of random pullback attractors for 2D and 3D non-autonomous stochastic convective Brinkman-Forchheimer equations on whole space

IF 1.8 4区 数学 Q1 MATHEMATICS
K. Kinra, M. T. Mohan
{"title":"Existence and upper semicontinuity of random pullback attractors for 2D and 3D non-autonomous stochastic convective Brinkman-Forchheimer equations on whole space","authors":"K. Kinra, M. T. Mohan","doi":"10.57262/die036-0506-367","DOIUrl":null,"url":null,"abstract":"In this work, we analyze the long time behavior of 2D as well as 3D convective Brinkman-Forchheimer (CBF) equations and its stochastic counter part with non-autonomous deterministic forcing term in $\\mathbb{R}^d$ $ (d=2, 3)$: $$\\frac{\\partial\\boldsymbol{u}}{\\partial t}-\\mu \\Delta\\boldsymbol{u}+(\\boldsymbol{u}\\cdot\\nabla)\\boldsymbol{u}+\\alpha\\boldsymbol{u}+\\beta|\\boldsymbol{u}|^{r-1}\\boldsymbol{u}+\\nabla p=\\boldsymbol{f},\\quad \\nabla\\cdot\\boldsymbol{u}=0,$$ where $r\\geq1$. We prove the existence of a unique global pullback attractor for non-autonomous CBF equations, for $d=2$ with $r\\geq1$, $d=3$ with $r>3$ and $d=r=3$ with $2\\beta\\mu\\geq1$. For the same cases, we show the existence of a unique random pullback attractor for non-autonomous stochastic CBF equations with multiplicative white noise. Finally, we establish the upper semicontinuity of the random pullback attractor, that is, the random pullback attractor converges towards the global pullback attractor when the noise intensity approaches to zero. Since we do not have compact Sobolev embeddings on unbounded domains, the pullback asymptotic compactness of the solution is proved by the method of energy equations given by Ball. For the case of Navier-Stokes equations defined on $\\mathbb{R}^d$, such results are not available and the presence of Darcy term $\\alpha\\boldsymbol{u}$ helps us to establish the above mentioned results for CBF equations.","PeriodicalId":50581,"journal":{"name":"Differential and Integral Equations","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2021-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential and Integral Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/die036-0506-367","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

Abstract

In this work, we analyze the long time behavior of 2D as well as 3D convective Brinkman-Forchheimer (CBF) equations and its stochastic counter part with non-autonomous deterministic forcing term in $\mathbb{R}^d$ $ (d=2, 3)$: $$\frac{\partial\boldsymbol{u}}{\partial t}-\mu \Delta\boldsymbol{u}+(\boldsymbol{u}\cdot\nabla)\boldsymbol{u}+\alpha\boldsymbol{u}+\beta|\boldsymbol{u}|^{r-1}\boldsymbol{u}+\nabla p=\boldsymbol{f},\quad \nabla\cdot\boldsymbol{u}=0,$$ where $r\geq1$. We prove the existence of a unique global pullback attractor for non-autonomous CBF equations, for $d=2$ with $r\geq1$, $d=3$ with $r>3$ and $d=r=3$ with $2\beta\mu\geq1$. For the same cases, we show the existence of a unique random pullback attractor for non-autonomous stochastic CBF equations with multiplicative white noise. Finally, we establish the upper semicontinuity of the random pullback attractor, that is, the random pullback attractor converges towards the global pullback attractor when the noise intensity approaches to zero. Since we do not have compact Sobolev embeddings on unbounded domains, the pullback asymptotic compactness of the solution is proved by the method of energy equations given by Ball. For the case of Navier-Stokes equations defined on $\mathbb{R}^d$, such results are not available and the presence of Darcy term $\alpha\boldsymbol{u}$ helps us to establish the above mentioned results for CBF equations.
全空间上二维和三维非自治随机对流Brinkman-Forchheimer方程随机回调吸引子的存在性和上半连续性
在该工作中,我们分析了二维和三维对流Brinkman-Forchheimer(CBF)方程的长时间行为及其在$\mathbb{R}^d$$(d=2,3)$中具有非自治确定性强迫项的随机反部分:$$\frac{\partial\boldsymbol{u}}{\bartial t}-\mu\Delta\boldsymbol{u}+p=\boldsymbol{f},\quad\nabla\cdot\boldsymbol{u}=0,$$其中$r\geq1$。我们证明了非自治CBF方程的唯一全局回调吸引子的存在性,对于$d=2$和$r\geq1$,$d=3$和$d=r=3$和$2\beta\mu\geq1$。对于同样的情况,我们证明了具有乘性白噪声的非自治随机CBF方程存在一个唯一的随机回调吸引子。最后,我们建立了随机回调吸引子的上半连续性,即当噪声强度接近零时,随机回调吸引子向全局回调吸引子收敛。由于我们在无界域上不存在紧致的Sobolev嵌入,因此用Ball给出的能量方程方法证明了解的回调渐近紧性。对于在$\mathbb{R}^d$上定义的Navier-Stokes方程的情况,这样的结果是不可用的,并且Darcy项$\alpha\boldsymbol{u}$的存在有助于我们建立CBF方程的上述结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Differential and Integral Equations
Differential and Integral Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.40
自引率
0.00%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Differential and Integral Equations will publish carefully selected research papers on mathematical aspects of differential and integral equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new, and of interest to a substantial number of mathematicians working in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信