Effects of electrolytic copper and copper alloy electrodes on machining performance in electrical discharge machining (EDM)

IF 2.7 4区 工程技术 Q2 ENGINEERING, MANUFACTURING
Ü. Şimşek, C. Çoğun, Ziya Esen
{"title":"Effects of electrolytic copper and copper alloy electrodes on machining performance in electrical discharge machining (EDM)","authors":"Ü. Şimşek, C. Çoğun, Ziya Esen","doi":"10.1080/10910344.2022.2044855","DOIUrl":null,"url":null,"abstract":"Abstract The most important cost element of electric discharge machining (EDM) is the production of tool electrode (shortly electrode). In the EDM process, copper and its alloys are often used as electrode materials. The machining with EDM without increasing the costs can be achieved by selecting the proper electrode with low production and material costs as well as high workpiece material removal rate (MRR), low electrode wear rate (EWR), and relative wear (RW = MRR/EWR). In this study, the EDM performance outputs, namely, MRR and RW were experimentally investigated for electrolytic copper, CuCr1Zr (with and without aging treatment) and CuCo2Be alloy electrode materials for varying machining parameters. The performance outputs were affected by the electrode material and the applied aging treatment. The aged CuCr1Zr alloy electrodes had higher electrical conductivity and better machining performance than the as-received alloy. The CuCo2Be alloy electrodes exhibited moderate to high MRR; however, their RW was the highest. Although the electrolytic copper has moderate MRR performance compared to the investigated alloys, its low cost increased its performance index, making it a more suitable electrode material for EDM applications.","PeriodicalId":51109,"journal":{"name":"Machining Science and Technology","volume":"26 1","pages":"229 - 244"},"PeriodicalIF":2.7000,"publicationDate":"2022-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Machining Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10910344.2022.2044855","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract The most important cost element of electric discharge machining (EDM) is the production of tool electrode (shortly electrode). In the EDM process, copper and its alloys are often used as electrode materials. The machining with EDM without increasing the costs can be achieved by selecting the proper electrode with low production and material costs as well as high workpiece material removal rate (MRR), low electrode wear rate (EWR), and relative wear (RW = MRR/EWR). In this study, the EDM performance outputs, namely, MRR and RW were experimentally investigated for electrolytic copper, CuCr1Zr (with and without aging treatment) and CuCo2Be alloy electrode materials for varying machining parameters. The performance outputs were affected by the electrode material and the applied aging treatment. The aged CuCr1Zr alloy electrodes had higher electrical conductivity and better machining performance than the as-received alloy. The CuCo2Be alloy electrodes exhibited moderate to high MRR; however, their RW was the highest. Although the electrolytic copper has moderate MRR performance compared to the investigated alloys, its low cost increased its performance index, making it a more suitable electrode material for EDM applications.
电解铜及铜合金电极对电火花加工性能的影响
摘要电火花加工最重要的成本因素是工具电极(短电极)的生产。在电火花加工过程中,铜及其合金经常被用作电极材料。通过选择具有低生产和材料成本以及高工件材料去除率(MRR)、低电极磨损率(EWR)和相对磨损率(RW = MRR/EWR)。在本研究中,实验研究了电解铜、CuCr1Zr(经过和不经过时效处理)和CuCo2Be合金电极材料在不同加工参数下的电火花加工性能输出,即MRR和RW。性能输出受到电极材料和所应用的老化处理的影响。时效后的CuCr1Zr合金电极具有比原合金更高的电导率和更好的加工性能。CuCo2Be合金电极表现出中等到高的MRR;但RW最高。尽管与所研究的合金相比,电解铜具有中等的MRR性能,但其低成本提高了其性能指标,使其成为更适合EDM应用的电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Machining Science and Technology
Machining Science and Technology 工程技术-材料科学:综合
CiteScore
5.70
自引率
3.70%
发文量
18
审稿时长
6 months
期刊介绍: Machining Science and Technology publishes original scientific and technical papers and review articles on topics related to traditional and nontraditional machining processes performed on all materials—metals and advanced alloys, polymers, ceramics, composites, and biomaterials. Topics covered include: -machining performance of all materials, including lightweight materials- coated and special cutting tools: design and machining performance evaluation- predictive models for machining performance and optimization, including machining dynamics- measurement and analysis of machined surfaces- sustainable machining: dry, near-dry, or Minimum Quantity Lubrication (MQL) and cryogenic machining processes precision and micro/nano machining- design and implementation of in-process sensors for monitoring and control of machining performance- surface integrity in machining processes, including detection and characterization of machining damage- new and advanced abrasive machining processes: design and performance analysis- cutting fluids and special coolants/lubricants- nontraditional and hybrid machining processes, including EDM, ECM, laser and plasma-assisted machining, waterjet and abrasive waterjet machining
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信