D. Hajdú, E. Dian, E. Klinkby, C. Cooper-Jensen, J. Osán, P. Zagyvai
{"title":"Neutron activation properties of PE-B4C-concrete assessed by measurements and simulations","authors":"D. Hajdú, E. Dian, E. Klinkby, C. Cooper-Jensen, J. Osán, P. Zagyvai","doi":"10.3233/jnr-190126","DOIUrl":null,"url":null,"abstract":"The neutron activation properties of the PE-B4C-concrete recently developed for the European Spallation Source (ESS) ERIC (European Spallation Source, https://europeanspallationsource.se/about) were investigated. On the one hand the concrete activation was compared to that of the ordinary concrete from which it was developed by means of irradiating concrete samples in the Budapest Research Reactor (BRR) (Budapest Neutron Centre, https://www.bnc.hu/). On the other hand, the measured activities were used to study the impact of input composition on Monte Carlo activation simulations. For this purpose, the complete course of the irradiation experiments were reproduced with MCNPX and Cinder90 simulations with nominal and measured elemental concrete compositions. Simulations suggest that for realistic activation predictions more detailed elemental compositions are required than the nominal ones. Energy-dispersive X-ray fluorescence (EDXRF) analysis technique was applied for this purpose, providing fair results for short-term activation estimations.","PeriodicalId":44708,"journal":{"name":"Journal of Neutron Research","volume":"21 1","pages":"87-94"},"PeriodicalIF":1.0000,"publicationDate":"2020-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/jnr-190126","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neutron Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jnr-190126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 4
Abstract
The neutron activation properties of the PE-B4C-concrete recently developed for the European Spallation Source (ESS) ERIC (European Spallation Source, https://europeanspallationsource.se/about) were investigated. On the one hand the concrete activation was compared to that of the ordinary concrete from which it was developed by means of irradiating concrete samples in the Budapest Research Reactor (BRR) (Budapest Neutron Centre, https://www.bnc.hu/). On the other hand, the measured activities were used to study the impact of input composition on Monte Carlo activation simulations. For this purpose, the complete course of the irradiation experiments were reproduced with MCNPX and Cinder90 simulations with nominal and measured elemental concrete compositions. Simulations suggest that for realistic activation predictions more detailed elemental compositions are required than the nominal ones. Energy-dispersive X-ray fluorescence (EDXRF) analysis technique was applied for this purpose, providing fair results for short-term activation estimations.