Convergence of Impact Measures and Impact Bundles

L. Egghe
{"title":"Convergence of Impact Measures and Impact Bundles","authors":"L. Egghe","doi":"10.2478/jdis-2022-0014","DOIUrl":null,"url":null,"abstract":"Abstract Purpose A new point of view in the study of impact is introduced. Design/methodology/approach Using fundamental theorems in real analysis we study the convergence of well-known impact measures. Findings We show that pointwise convergence is maintained by all well-known impact bundles (such as the h-, g-, and R-bundle) and that the μ-bundle even maintains uniform convergence. Based on these results, a classification of impact bundles is given. Research limitations As for all impact studies, it is just impossible to study all measures in depth. Practical implications It is proposed to include convergence properties in the study of impact measures. Originality/value This article is the first to present a bundle classification based on convergence properties of impact bundles.","PeriodicalId":92237,"journal":{"name":"Journal of data and information science (Warsaw, Poland)","volume":"7 1","pages":"5 - 19"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data and information science (Warsaw, Poland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jdis-2022-0014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Abstract Purpose A new point of view in the study of impact is introduced. Design/methodology/approach Using fundamental theorems in real analysis we study the convergence of well-known impact measures. Findings We show that pointwise convergence is maintained by all well-known impact bundles (such as the h-, g-, and R-bundle) and that the μ-bundle even maintains uniform convergence. Based on these results, a classification of impact bundles is given. Research limitations As for all impact studies, it is just impossible to study all measures in depth. Practical implications It is proposed to include convergence properties in the study of impact measures. Originality/value This article is the first to present a bundle classification based on convergence properties of impact bundles.
影响测度和影响束的收敛性
摘要目的介绍冲击研究的一个新观点。设计/方法论/方法利用实分析中的基本定理,我们研究了众所周知的影响测度的收敛性。我们的发现表明,所有已知的影响丛(如h-、g-和R-丛)都保持了逐点收敛,μ-丛甚至保持了一致收敛。基于这些结果,给出了冲击束的分类。研究局限性对于所有的影响研究来说,不可能深入研究所有的措施。实际意义建议在影响措施的研究中包括收敛特性。原创性/价值本文首次提出了一种基于冲击束收敛特性的束分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信