{"title":"Land Suitability Evaluation for Oil Palm (Elaeis guineensis Jacq.) in Coastal Plains of Southwest Cameroon","authors":"G. K. Kome, F. O. Tabi, R. K. Enang, F. Silatsa","doi":"10.4236/ojss.2020.107014","DOIUrl":null,"url":null,"abstract":"Declining yields in oil palm fresh fruit bunch (FFB) have been recorded over the past years in the coastal lowlands of southwest Cameroon and current actual yields are very low (−1•yr−1) compared to the potential yields (25 t FFB ha−1•yr−1). One of the problems limiting optimum oil palm production is lack of detailed pedological information to guide plantation establishment and management. A land suitability evaluation was carried out for some major oil palm producing areas of southwest Cameroon to identify land qualities limiting optimal production. Thirteen sites (9 with sedimentary parent materials and 4 with volcanic parent material) were evaluated using a parametric method. Results indicate that climate was not a major limiting factor for oil palm production in coastal plains of southwest Cameroon. However, soil physical characteristics (mainly clayey texture and poor drainage) and soil fertility constitute limitations to oil palm production. Specifically, limitations in cation exchange capacity (CEC), base saturation (BS), organic carbon (OC) and pH were slight to moderate while K mole fraction was the most severe and the most limiting in all the sites. The fertility limitations were more pronounced in soils derived from sedimentary parent materials where 33% had limitations caused by soil pH and OC compared to none for volcanic soils. In addition, 77.8% of sedimentary soils had limitations caused by CEC compared to 25% for volcanic soils. Considering the overall suitability, soils derived from volcanic parent materials were potentially more suitable for oil palm cultivation ((S3)—50%, (S2)—50%) compared to sedimentary soils ((N)—11%, (S3)—78% and (S2)—11%). Based on the suitability classes of the different soils derived from dissimilar parent materials, appropriate site-specific soil management is needed to improve oil palm yields, especially with emphasis on K fertilization and improved soil water management. Plantation management in coastal plains of South West Cameroon therefore should factor in differences in soil parent material.","PeriodicalId":57369,"journal":{"name":"土壤科学期刊(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"土壤科学期刊(英文)","FirstCategoryId":"1091","ListUrlMain":"https://doi.org/10.4236/ojss.2020.107014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Declining yields in oil palm fresh fruit bunch (FFB) have been recorded over the past years in the coastal lowlands of southwest Cameroon and current actual yields are very low (−1•yr−1) compared to the potential yields (25 t FFB ha−1•yr−1). One of the problems limiting optimum oil palm production is lack of detailed pedological information to guide plantation establishment and management. A land suitability evaluation was carried out for some major oil palm producing areas of southwest Cameroon to identify land qualities limiting optimal production. Thirteen sites (9 with sedimentary parent materials and 4 with volcanic parent material) were evaluated using a parametric method. Results indicate that climate was not a major limiting factor for oil palm production in coastal plains of southwest Cameroon. However, soil physical characteristics (mainly clayey texture and poor drainage) and soil fertility constitute limitations to oil palm production. Specifically, limitations in cation exchange capacity (CEC), base saturation (BS), organic carbon (OC) and pH were slight to moderate while K mole fraction was the most severe and the most limiting in all the sites. The fertility limitations were more pronounced in soils derived from sedimentary parent materials where 33% had limitations caused by soil pH and OC compared to none for volcanic soils. In addition, 77.8% of sedimentary soils had limitations caused by CEC compared to 25% for volcanic soils. Considering the overall suitability, soils derived from volcanic parent materials were potentially more suitable for oil palm cultivation ((S3)—50%, (S2)—50%) compared to sedimentary soils ((N)—11%, (S3)—78% and (S2)—11%). Based on the suitability classes of the different soils derived from dissimilar parent materials, appropriate site-specific soil management is needed to improve oil palm yields, especially with emphasis on K fertilization and improved soil water management. Plantation management in coastal plains of South West Cameroon therefore should factor in differences in soil parent material.