Nanomechanical and nanotribological properties of self-lubricating Ti/MoS2 nanocoating at nanoscale level

IF 1 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Summèra Banday, M. F. Wani
{"title":"Nanomechanical and nanotribological properties of self-lubricating Ti/MoS2 nanocoating at nanoscale level","authors":"Summèra Banday, M. F. Wani","doi":"10.1504/ijsurfse.2020.10030169","DOIUrl":null,"url":null,"abstract":"Ti/MoS2 coating of thickness 99.79 nm was prepared by pulse laser deposition method on Al-Si substrate. Mechanical and nanotribological properties of Ti/MoS2 coating were obtained by carrying out nanoindentation, nanoscratch and nanowear tests at low loads. It was observed that Young's modulus and nanohardness of Ti/MoS2 coating decrease with increasing load. The coefficient of friction also decreases with the increase in sliding distance, which proves that Ti/MoS2 coating have self-lubricating property. The wear rate of Ti/MoS2 coating increases from 5.7 × 10−10 mm3/Nm to 2.1 × 10−9 mm3/Nm with the increase in load. Scanning probe microscope images of Ti/MoS2 coating shows the plastic flow of coating with no debris and cracks on the surface. It indicates that the abrasive wear is the main wear mechanism.","PeriodicalId":14460,"journal":{"name":"International Journal of Surface Science and Engineering","volume":" ","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Surface Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1504/ijsurfse.2020.10030169","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 7

Abstract

Ti/MoS2 coating of thickness 99.79 nm was prepared by pulse laser deposition method on Al-Si substrate. Mechanical and nanotribological properties of Ti/MoS2 coating were obtained by carrying out nanoindentation, nanoscratch and nanowear tests at low loads. It was observed that Young's modulus and nanohardness of Ti/MoS2 coating decrease with increasing load. The coefficient of friction also decreases with the increase in sliding distance, which proves that Ti/MoS2 coating have self-lubricating property. The wear rate of Ti/MoS2 coating increases from 5.7 × 10−10 mm3/Nm to 2.1 × 10−9 mm3/Nm with the increase in load. Scanning probe microscope images of Ti/MoS2 coating shows the plastic flow of coating with no debris and cracks on the surface. It indicates that the abrasive wear is the main wear mechanism.
纳米级自润滑Ti/MoS2纳米涂层的纳米力学和纳米摩擦学性能
采用脉冲激光沉积法在Al-Si衬底上制备了厚度为99.79 nm的Ti/MoS2涂层。通过低载荷下的纳米压痕、纳米划痕和纳米磨损试验,获得了Ti/MoS2涂层的力学性能和纳米摩擦学性能。结果表明,Ti/MoS2涂层的杨氏模量和纳米硬度随载荷的增加而降低。摩擦系数随滑动距离的增加而减小,表明Ti/MoS2涂层具有自润滑性能。随着载荷的增加,Ti/MoS2涂层的磨损率由5.7 × 10−10 mm3/Nm增加到2.1 × 10−9 mm3/Nm。Ti/MoS2涂层的扫描探针图像显示涂层的塑性流动,表面无碎屑和裂纹。表明磨粒磨损是主要的磨损机理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
25.00%
发文量
21
审稿时长
>12 weeks
期刊介绍: IJSurfSE publishes refereed quality papers in the broad field of surface science and engineering including tribology, but with a special emphasis on the research and development in friction, wear, coatings and surface modification processes such as surface treatment, cladding, machining, polishing and grinding, across multiple scales from nanoscopic to macroscopic dimensions. High-integrity and high-performance surfaces of components have become a central research area in the professional community whose aim is to develop highly reliable ultra-precision devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信