A size-dependent effect of smart functionally graded piezoelectric porous nanoscale plates

IF 2.7 3区 材料科学 Q2 ENGINEERING, MECHANICAL
Lieu B. Nguyen, H. Nguyen-Xuan, Chien H. Thai, P. Phung-Van
{"title":"A size-dependent effect of smart functionally graded piezoelectric porous nanoscale plates","authors":"Lieu B. Nguyen,&nbsp;H. Nguyen-Xuan,&nbsp;Chien H. Thai,&nbsp;P. Phung-Van","doi":"10.1007/s10999-023-09660-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a size-dependent isogeometric analysis of smart functionally graded porous nanoscale plates made of two piezoelectric materials. Two porous distributions, namely even and uneven, are considered along the thickness direction. To take into account for size-dependent effects, the nonlocal elasticity theory proposed by Eringen is employed to investigate the behaviors of the smart nanoplate. An electric potential field is adopted based on the Maxwell's equation. The governing equations for smart functionally graded piezoelectric porous nanoplates are obtained and utilized by a combination of higher-order shear deformation theory and non-uniform rational B-splines formulations. The present approximation is capable of meeting the necessary conditions with at least third-order derivatives in the approximate formulations of the smart nanoplate. The natural frequencies of the smart nanoplate are fully investigated by studying the influences of power-law index, external electric voltage, porosity coefficient, boundary condition, porosity distributions, and nonlocal parameter, respectively. The present results, when compared to those from published documents, have been evaluated and found to be both reliable and effective. This paper reports several new computational results that can be of great interest to researchers due to the innovative approach and both the development and future application for smart nanostructures.</p></div>","PeriodicalId":593,"journal":{"name":"International Journal of Mechanics and Materials in Design","volume":"19 4","pages":"817 - 830"},"PeriodicalIF":2.7000,"publicationDate":"2023-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanics and Materials in Design","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10999-023-09660-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents a size-dependent isogeometric analysis of smart functionally graded porous nanoscale plates made of two piezoelectric materials. Two porous distributions, namely even and uneven, are considered along the thickness direction. To take into account for size-dependent effects, the nonlocal elasticity theory proposed by Eringen is employed to investigate the behaviors of the smart nanoplate. An electric potential field is adopted based on the Maxwell's equation. The governing equations for smart functionally graded piezoelectric porous nanoplates are obtained and utilized by a combination of higher-order shear deformation theory and non-uniform rational B-splines formulations. The present approximation is capable of meeting the necessary conditions with at least third-order derivatives in the approximate formulations of the smart nanoplate. The natural frequencies of the smart nanoplate are fully investigated by studying the influences of power-law index, external electric voltage, porosity coefficient, boundary condition, porosity distributions, and nonlocal parameter, respectively. The present results, when compared to those from published documents, have been evaluated and found to be both reliable and effective. This paper reports several new computational results that can be of great interest to researchers due to the innovative approach and both the development and future application for smart nanostructures.

Abstract Image

智能功能梯度压电多孔纳米板的尺寸依赖效应
本文介绍了由两种压电材料制成的智能功能梯度多孔纳米板的尺寸相关等几何分析。沿厚度方向考虑均匀和不均匀两种多孔分布。为了考虑尺寸依赖效应,采用Eringen提出的非局部弹性理论对智能纳米板的行为进行了研究。采用基于麦克斯韦方程的势场。将高阶剪切变形理论与非均匀有理b样条公式相结合,得到了智能梯度压电多孔纳米板的控制方程。该近似能满足智能纳米板近似公式中至少有三阶导数的必要条件。通过研究幂律指数、外部电压、孔隙率系数、边界条件、孔隙率分布和非局部参数对智能纳米板固有频率的影响,对智能纳米板的固有频率进行了全面研究。将目前的结果与已发表的文件的结果进行了比较,认为既可靠又有效。本文报告了几个新的计算结果,由于创新的方法和智能纳米结构的发展和未来的应用,可以引起研究人员的极大兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Mechanics and Materials in Design
International Journal of Mechanics and Materials in Design ENGINEERING, MECHANICAL-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
6.00
自引率
5.40%
发文量
41
审稿时长
>12 weeks
期刊介绍: It is the objective of this journal to provide an effective medium for the dissemination of recent advances and original works in mechanics and materials'' engineering and their impact on the design process in an integrated, highly focused and coherent format. The goal is to enable mechanical, aeronautical, civil, automotive, biomedical, chemical and nuclear engineers, researchers and scientists to keep abreast of recent developments and exchange ideas on a number of topics relating to the use of mechanics and materials in design. Analytical synopsis of contents: The following non-exhaustive list is considered to be within the scope of the International Journal of Mechanics and Materials in Design: Intelligent Design: Nano-engineering and Nano-science in Design; Smart Materials and Adaptive Structures in Design; Mechanism(s) Design; Design against Failure; Design for Manufacturing; Design of Ultralight Structures; Design for a Clean Environment; Impact and Crashworthiness; Microelectronic Packaging Systems. Advanced Materials in Design: Newly Engineered Materials; Smart Materials and Adaptive Structures; Micromechanical Modelling of Composites; Damage Characterisation of Advanced/Traditional Materials; Alternative Use of Traditional Materials in Design; Functionally Graded Materials; Failure Analysis: Fatigue and Fracture; Multiscale Modelling Concepts and Methodology; Interfaces, interfacial properties and characterisation. Design Analysis and Optimisation: Shape and Topology Optimisation; Structural Optimisation; Optimisation Algorithms in Design; Nonlinear Mechanics in Design; Novel Numerical Tools in Design; Geometric Modelling and CAD Tools in Design; FEM, BEM and Hybrid Methods; Integrated Computer Aided Design; Computational Failure Analysis; Coupled Thermo-Electro-Mechanical Designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信