{"title":"Actuator modelling for attitude control using incremental nonlinear dynamic inversion","authors":"F. Binz, D. Moormann","doi":"10.1177/1756829320961925","DOIUrl":null,"url":null,"abstract":"Recently, the concept of incremental nonlinear dynamic inversion has seen an increasing adoption as an attitude control method for a variety of aircraft configurations. The reasons for this are good stability and robustness properties, moderate computation requirements and low requirements on modelling fidelity. While previous work investigated the robust stability properties of incremental nonlinear dynamic inversion, the actual closed-loop performance may degrade severely in the face of model uncertainty. We address this issue by first analysing the effects of modelling errors on the closed-loop performance by observing the movement of the system poles. Based on this, we analyse the neccessary modelling fidelity and propose simple modelling methods for the usual actuators found on small-scale electric aircraft. Finally, we analyse the actuator models using (flight) test data where possible.","PeriodicalId":49053,"journal":{"name":"International Journal of Micro Air Vehicles","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/1756829320961925","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Micro Air Vehicles","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/1756829320961925","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 2
Abstract
Recently, the concept of incremental nonlinear dynamic inversion has seen an increasing adoption as an attitude control method for a variety of aircraft configurations. The reasons for this are good stability and robustness properties, moderate computation requirements and low requirements on modelling fidelity. While previous work investigated the robust stability properties of incremental nonlinear dynamic inversion, the actual closed-loop performance may degrade severely in the face of model uncertainty. We address this issue by first analysing the effects of modelling errors on the closed-loop performance by observing the movement of the system poles. Based on this, we analyse the neccessary modelling fidelity and propose simple modelling methods for the usual actuators found on small-scale electric aircraft. Finally, we analyse the actuator models using (flight) test data where possible.
期刊介绍:
The role of the International Journal of Micro Air Vehicles is to provide the scientific and engineering community with a peer-reviewed open access journal dedicated to publishing high-quality technical articles summarizing both fundamental and applied research in the area of micro air vehicles.