S. Tseng, Bogdan Nicolae, F. Cappello, Aparna Chandramowlishwaran
{"title":"Demystifying asynchronous I/O Interference in HPC applications","authors":"S. Tseng, Bogdan Nicolae, F. Cappello, Aparna Chandramowlishwaran","doi":"10.1177/10943420211016511","DOIUrl":null,"url":null,"abstract":"With increasing complexity of HPC workflows, data management services need to perform expensive I/O operations asynchronously in the background, aiming to overlap the I/O with the application runtime. However, this may cause interference due to competition for resources: CPU, memory/network bandwidth. The advent of multi-core architectures has exacerbated this problem, as many I/O operations are issued concurrently, thereby competing not only with the application but also among themselves. Furthermore, the interference patterns can dynamically change as a response to variations in application behavior and I/O subsystems (e.g. multiple users sharing a parallel file system). Without a thorough understanding, I/O operations may perform suboptimally, potentially even worse than in the blocking case. To fill this gap, this paper investigates the causes and consequences of interference due to asynchronous I/O on HPC systems. Specifically, we focus on multi-core CPUs and memory bandwidth, isolating the interference due to each resource. Then, we perform an in-depth study to explain the interplay and contention in a variety of resource sharing scenarios such as varying priority and number of background I/O threads and different I/O strategies: sendfile, read/write, mmap/write underlining trade-offs. The insights from this study are important both to enable guided optimizations of existing background I/O, as well as to open new opportunities to design advanced asynchronous I/O strategies.","PeriodicalId":54957,"journal":{"name":"International Journal of High Performance Computing Applications","volume":"35 1","pages":"391 - 412"},"PeriodicalIF":3.5000,"publicationDate":"2021-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1177/10943420211016511","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of High Performance Computing Applications","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/10943420211016511","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 4
Abstract
With increasing complexity of HPC workflows, data management services need to perform expensive I/O operations asynchronously in the background, aiming to overlap the I/O with the application runtime. However, this may cause interference due to competition for resources: CPU, memory/network bandwidth. The advent of multi-core architectures has exacerbated this problem, as many I/O operations are issued concurrently, thereby competing not only with the application but also among themselves. Furthermore, the interference patterns can dynamically change as a response to variations in application behavior and I/O subsystems (e.g. multiple users sharing a parallel file system). Without a thorough understanding, I/O operations may perform suboptimally, potentially even worse than in the blocking case. To fill this gap, this paper investigates the causes and consequences of interference due to asynchronous I/O on HPC systems. Specifically, we focus on multi-core CPUs and memory bandwidth, isolating the interference due to each resource. Then, we perform an in-depth study to explain the interplay and contention in a variety of resource sharing scenarios such as varying priority and number of background I/O threads and different I/O strategies: sendfile, read/write, mmap/write underlining trade-offs. The insights from this study are important both to enable guided optimizations of existing background I/O, as well as to open new opportunities to design advanced asynchronous I/O strategies.
期刊介绍:
With ever increasing pressure for health services in all countries to meet rising demands, improve their quality and efficiency, and to be more accountable; the need for rigorous research and policy analysis has never been greater. The Journal of Health Services Research & Policy presents the latest scientific research, insightful overviews and reflections on underlying issues, and innovative, thought provoking contributions from leading academics and policy-makers. It provides ideas and hope for solving dilemmas that confront all countries.