Pyrolysis of low-value waste sawdust over low-cost catalysts: physicochemical characterization of pyrolytic oil and value-added biochar

IF 14.4 Q1 ENERGY & FUELS
R. Mishra, K. Mohanty
{"title":"Pyrolysis of low-value waste sawdust over low-cost catalysts: physicochemical characterization of pyrolytic oil and value-added biochar","authors":"R. Mishra, K. Mohanty","doi":"10.18331/brj2022.9.4.4","DOIUrl":null,"url":null,"abstract":"The present work deals with an experimental investigation into the generation and characterization of pyrolytic oil and biochar from Sal wood sawdust (SW). The pyrolysis experiment was performed in a semi-batch reactor at 500 oC and 80 oC/min heating rate with CaO, CuO, and Al2O3 catalysts. Further, the pyrolytic oil and biochar were investigated using different analyses, including proximate analysis, elemental analysis, thermal stability, GC-MS, FTIR, field emission scanning electron microscopy, electrical conductivity analysis, higher heating value (HHV), zeta potential analysis, and ash content analysis. Pyrolysis results revealed that compared to thermal pyrolysis (46.02 wt%), the pyrolytic oil yield was improved by catalytic pyrolysis with CaO and CuO (50.02 and 48.23 wt%, respectively). Further, the characterization of pyrolytic oil revealed that the loading of catalysts considerably improved the oil's properties by lowering its viscosity (69.50 to 22 cSt), ash content (0.26 to 0.11 wt%), and oxygen content (28.32 to16.60 %) while raising its acidity (4.2 to 9.6), heating value (25.66 to 36.09 MJ/kg), and carbon content (61.79 to 74.28%). According to the FTIR analysis, the pyrolytic oil contained hydrocarbons, phenols, aromatics, alcohols, and oxygenated compounds. Additionally, the GC-MS analysis showed that catalysts significantly reduced oxygenated fractions, phenols (20.23 to 15.26%), acids (12.23 to 6.56%), and increased hydrocarbons (12 to 16 wt%). Additionally, the results of the biochar analysis demonstrated that SW biochar was appropriate for a range of industrial applications, including in catalysts, supercapacitors, fuel cells, and bio-composite materials.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/brj2022.9.4.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 6

Abstract

The present work deals with an experimental investigation into the generation and characterization of pyrolytic oil and biochar from Sal wood sawdust (SW). The pyrolysis experiment was performed in a semi-batch reactor at 500 oC and 80 oC/min heating rate with CaO, CuO, and Al2O3 catalysts. Further, the pyrolytic oil and biochar were investigated using different analyses, including proximate analysis, elemental analysis, thermal stability, GC-MS, FTIR, field emission scanning electron microscopy, electrical conductivity analysis, higher heating value (HHV), zeta potential analysis, and ash content analysis. Pyrolysis results revealed that compared to thermal pyrolysis (46.02 wt%), the pyrolytic oil yield was improved by catalytic pyrolysis with CaO and CuO (50.02 and 48.23 wt%, respectively). Further, the characterization of pyrolytic oil revealed that the loading of catalysts considerably improved the oil's properties by lowering its viscosity (69.50 to 22 cSt), ash content (0.26 to 0.11 wt%), and oxygen content (28.32 to16.60 %) while raising its acidity (4.2 to 9.6), heating value (25.66 to 36.09 MJ/kg), and carbon content (61.79 to 74.28%). According to the FTIR analysis, the pyrolytic oil contained hydrocarbons, phenols, aromatics, alcohols, and oxygenated compounds. Additionally, the GC-MS analysis showed that catalysts significantly reduced oxygenated fractions, phenols (20.23 to 15.26%), acids (12.23 to 6.56%), and increased hydrocarbons (12 to 16 wt%). Additionally, the results of the biochar analysis demonstrated that SW biochar was appropriate for a range of industrial applications, including in catalysts, supercapacitors, fuel cells, and bio-composite materials.
低价值废木屑在低成本催化剂上的热解:热解油和增值生物炭的物理化学表征
本文研究了萨尔木木屑热解油和生物炭的制备及其特性。在半间歇式反应器中,以CaO、CuO和Al2O3为催化剂,在500℃和80℃/min的升温速率下进行热解实验。此外,对热解油和生物炭进行了分析,包括近似分析、元素分析、热稳定性、GC-MS、FTIR、场发射扫描电镜、电导率分析、高热值(HHV)、zeta电位分析和灰分分析。热解结果表明,与热热解(46.02 wt%)相比,CaO和CuO催化热解提高了热解油收率(分别为50.02和48.23 wt%)。此外,对热解油的表征表明,催化剂的负载显著改善了热解油的性能,降低了其粘度(69.50 ~ 22 cSt)、灰分(0.26 ~ 0.11 wt%)和氧含量(28.32 ~ 16.60%),同时提高了其酸度(4.2 ~ 9.6)、热值(25.66 ~ 36.09 MJ/kg)和碳含量(61.79 ~ 74.28%)。根据红外光谱分析,热解油中含有碳氢化合物、酚类、芳烃、醇类和含氧化合物。此外,GC-MS分析表明,催化剂显著降低了含氧组分、酚类(20.23 ~ 15.26%)、酸类(12.23 ~ 6.56%),并增加了碳氢化合物(12 ~ 16 wt%)。此外,生物炭分析结果表明,SW生物炭适用于一系列工业应用,包括催化剂、超级电容器、燃料电池和生物复合材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信