The condition for a sequence to be potentially $A_{L, M}$- graphic

IF 0.6 Q3 MATHEMATICS
S. Pirzada, Bilal A. Chat
{"title":"The condition for a sequence to be potentially $A_{L, M}$- graphic","authors":"S. Pirzada, Bilal A. Chat","doi":"10.22108/TOC.2017.20361","DOIUrl":null,"url":null,"abstract":"The set of all non-increasing non-negative integer sequences $pi=(d_1‎, ‎d_2,ldots,d_n)$ is denoted by $NS_n$‎. ‎A sequence $piin NS_{n}$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices‎, ‎and such a graph $G$ is called a realization of $pi$‎. ‎The set of all graphic sequences in $NS_{n}$ is denoted by $GS_{n}$‎. ‎The complete product split graph on $L‎ + ‎M$ vertices is denoted by $overline{S}_{L‎, ‎M}=K_{L} vee overline{K}_{M}$‎, ‎where $K_{L}$ and $K_{M}$ are complete graphs respectively on $L = sumlimits_{i = 1}^{p}r_{i}$ and $M = sumlimits_{i = 1}^{p}s_{i}$ vertices with $r_{i}$ and $s_{i}$ being integers‎. ‎Another split graph is denoted by $S_{L‎, ‎M} = overline{S}_{r_{1}‎, ‎s_{1}} veeoverline{S}_{r_{2}‎, ‎s_{2}} vee cdots vee overline{S}_{r_{p}‎, ‎s_{p}}= (K_{r_{1}} vee overline{K}_{s_{1}})vee (K_{r_{2}} vee overline{K}_{s_{2}})vee cdots vee (K_{r_{p}} vee overline{K}_{s_{p}})$‎. ‎A sequence $pi=(d_{1}‎, ‎d_{2},ldots,d_{n})$ is said to be potentially $S_{L‎, ‎M}$-graphic (respectively $overline{S}_{L‎, ‎M}$)-graphic if there is a realization $G$ of $pi$ containing $S_{L‎, ‎M}$ (respectively $overline{S}_{L‎, ‎M}$) as a subgraph‎. ‎If $pi$ has a realization $G$ containing $S_{L‎, ‎M}$ on those vertices having degrees $d_{1}‎, ‎d_{2},ldots,d_{L+M}$‎, ‎then $pi$ is potentially $A_{L‎, ‎M}$-graphic‎. ‎A non-increasing sequence of non-negative integers $pi = (d_{1}‎, ‎d_{2},ldots,d_{n})$ is potentially $A_{L‎, ‎M}$-graphic if and only if it is potentially $S_{L‎, ‎M}$-graphic‎. ‎In this paper‎, ‎we obtain the sufficient condition for a graphic sequence to be potentially $A_{L‎, ‎M}$-graphic and this result is a generalization of that given by J‎. ‎H‎. ‎Yin on split graphs‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"6 1","pages":"21-27"},"PeriodicalIF":0.6000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2017.20361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The set of all non-increasing non-negative integer sequences $pi=(d_1‎, ‎d_2,ldots,d_n)$ is denoted by $NS_n$‎. ‎A sequence $piin NS_{n}$ is said to be graphic if it is the degree sequence of a simple graph $G$ on $n$ vertices‎, ‎and such a graph $G$ is called a realization of $pi$‎. ‎The set of all graphic sequences in $NS_{n}$ is denoted by $GS_{n}$‎. ‎The complete product split graph on $L‎ + ‎M$ vertices is denoted by $overline{S}_{L‎, ‎M}=K_{L} vee overline{K}_{M}$‎, ‎where $K_{L}$ and $K_{M}$ are complete graphs respectively on $L = sumlimits_{i = 1}^{p}r_{i}$ and $M = sumlimits_{i = 1}^{p}s_{i}$ vertices with $r_{i}$ and $s_{i}$ being integers‎. ‎Another split graph is denoted by $S_{L‎, ‎M} = overline{S}_{r_{1}‎, ‎s_{1}} veeoverline{S}_{r_{2}‎, ‎s_{2}} vee cdots vee overline{S}_{r_{p}‎, ‎s_{p}}= (K_{r_{1}} vee overline{K}_{s_{1}})vee (K_{r_{2}} vee overline{K}_{s_{2}})vee cdots vee (K_{r_{p}} vee overline{K}_{s_{p}})$‎. ‎A sequence $pi=(d_{1}‎, ‎d_{2},ldots,d_{n})$ is said to be potentially $S_{L‎, ‎M}$-graphic (respectively $overline{S}_{L‎, ‎M}$)-graphic if there is a realization $G$ of $pi$ containing $S_{L‎, ‎M}$ (respectively $overline{S}_{L‎, ‎M}$) as a subgraph‎. ‎If $pi$ has a realization $G$ containing $S_{L‎, ‎M}$ on those vertices having degrees $d_{1}‎, ‎d_{2},ldots,d_{L+M}$‎, ‎then $pi$ is potentially $A_{L‎, ‎M}$-graphic‎. ‎A non-increasing sequence of non-negative integers $pi = (d_{1}‎, ‎d_{2},ldots,d_{n})$ is potentially $A_{L‎, ‎M}$-graphic if and only if it is potentially $S_{L‎, ‎M}$-graphic‎. ‎In this paper‎, ‎we obtain the sufficient condition for a graphic sequence to be potentially $A_{L‎, ‎M}$-graphic and this result is a generalization of that given by J‎. ‎H‎. ‎Yin on split graphs‎.
一个序列可能是$A_{L, M}$-图形的条件
所有非递增非负整数序列$pi=(d_1, d_2,ldots,d_n)$的集合用$NS_n$ $表示。如果一个序列$piin NS_{n}$是一个简单图$G$在$n$顶点上的度序列,那么这个序列$piin NS_{n}$被认为是图形的,这样的图$G$被称为$pi$ $的实现。$NS_{n}$中所有图形序列的集合用$GS_{n}$ $表示。$L + $M $顶点上的完全积分割图表示为$overline{S}_{L}, $M}=K_{L}, $K}_{M}$,其中$K_{L}$和$K_{M}$分别是$L = sumlimits_{i = 1}^{p}r_{i}$和$M = sumlimits_{i}$顶点上的完全图,其中$r_{i}$和$s_{i}$为整数。‎另一个分裂图是用美元S_ {L‎‎M} =眉题{年代}_ {r_{1},‎‎S_ {1}} veeoverline{年代}_ {r_{2},‎‎S_ {2}} v字形cdots v字形眉题{年代}_ {r_ {p}‎,‎S_ {p}} = (K_ {r_ {1}} v字形眉题{K} _ {S_ {1}}) v字形(K_ {r_ {2}} v字形眉题{K} _ {S_ {2}}) v字形cdots v字形(K_ {r_ {p}} v字形眉题{K} _ {S_ {p}})‎美元。如果$pi$的实现$G$包含$S_{L}、$ M}$(分别为$overline{S}}、$overline{L}、$ M}$)作为子图,则序列$pi=(d_{1}™,$ d_{2},ldots,d_{n})$是潜在的$S_{L}、$ M}$-graphic(分别为$overline{S}_{L}、$ M}$)。如果$pi$有一个实现$G$包含$S_{L}, $ M}$在那些度为$d_{1}, $d_{2},ldots,d_{L+M}$ $上,那么$pi$可能是$A_{L}, $ M}$-图形。一个非负整数的非递增序列$pi = (d_{1},d_{2},ldots,d_{n})$可能是$A_{L}, $ M}$-graphic的当且仅当它可能是$S_{L}, $ M}$-graphic。在本文中,我们得到了一个图序列可能是$A_{L}, $ M}$-图的充分条件,并推广了J的结论。‎‎。分割图上的阴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信