Christina A. Schwanen, Jan Müller, Philipp Schulte, Jan Schwarzbauer
{"title":"Distribution, remobilization and accumulation of organic contaminants by flood events in a meso-scaled catchment system","authors":"Christina A. Schwanen, Jan Müller, Philipp Schulte, Jan Schwarzbauer","doi":"10.1186/s12302-023-00717-4","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Extreme weather events and natural disasters such as floods can cause severe damage and impacts on catchment systems covering natural as well as urban, industrial or agricultural areas. Thus, floods often lead to the acute and unusual release of organic pollutants, as well as the remobilization of legacy contaminations or old burdens. Floodplains are then of major relevance for the accumulation of pollutants. Accordingly, various floodplains distributed throughout the course of the Rur River were sampled immediately after two flood events in January/February and July 2021. The main objective was to address the general lack of knowledge on indirect effects of flooding and the corresponding distribution and accumulation of organic pollutants regarding different dimensions and dynamics of flood events.</p><h3>Results</h3><p>Gas Chromatography/Mass Spectrometry (GC/MS) based non-target screenings revealed the presence of several lipophilic to moderate polar organic pollutant groups, including PAHs (polycyclic aromatic hydrocarbons), hopanes, PCBs (polychlorinated biphenyls), LABs (linear alkylbenzenes) and various other industrial substances. These substances are indicators of petrogenic pollution, historical and current industry in the catchment area, and of wastewater and urban pollution, respectively. In general, concentrations detected after the extreme summer flood were higher than in winter. This points to additional emission sources due to substantially higher discharges and consequently more severe flooding in July. The main tributaries also had a major influence on the input and concentrations of organic pollutants at the receiving Rur River. Further on, structural features such as dams and reservoirs, but also (re)naturalized areas were clearly recognizable in the flood-related dispersion of organic pollutants. Interestingly, LAB contamination was similar after both flood events regardless of the specific dimension.</p><h3>Conclusions</h3><p>Flood dimension and frequency are of great relevance for the distribution, remobilization and accumulation of organic contaminants. However, special attention should be given to the introduction of wastewater pollutants for any flood extent. Overall, organic indicators are therefore very useful to obtain information on specific distribution patterns and the influence of tributaries or structural measures, providing an important basis for the assessment of short- and long-term environmental risks and hazards.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":"35 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-023-00717-4","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-023-00717-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Background
Extreme weather events and natural disasters such as floods can cause severe damage and impacts on catchment systems covering natural as well as urban, industrial or agricultural areas. Thus, floods often lead to the acute and unusual release of organic pollutants, as well as the remobilization of legacy contaminations or old burdens. Floodplains are then of major relevance for the accumulation of pollutants. Accordingly, various floodplains distributed throughout the course of the Rur River were sampled immediately after two flood events in January/February and July 2021. The main objective was to address the general lack of knowledge on indirect effects of flooding and the corresponding distribution and accumulation of organic pollutants regarding different dimensions and dynamics of flood events.
Results
Gas Chromatography/Mass Spectrometry (GC/MS) based non-target screenings revealed the presence of several lipophilic to moderate polar organic pollutant groups, including PAHs (polycyclic aromatic hydrocarbons), hopanes, PCBs (polychlorinated biphenyls), LABs (linear alkylbenzenes) and various other industrial substances. These substances are indicators of petrogenic pollution, historical and current industry in the catchment area, and of wastewater and urban pollution, respectively. In general, concentrations detected after the extreme summer flood were higher than in winter. This points to additional emission sources due to substantially higher discharges and consequently more severe flooding in July. The main tributaries also had a major influence on the input and concentrations of organic pollutants at the receiving Rur River. Further on, structural features such as dams and reservoirs, but also (re)naturalized areas were clearly recognizable in the flood-related dispersion of organic pollutants. Interestingly, LAB contamination was similar after both flood events regardless of the specific dimension.
Conclusions
Flood dimension and frequency are of great relevance for the distribution, remobilization and accumulation of organic contaminants. However, special attention should be given to the introduction of wastewater pollutants for any flood extent. Overall, organic indicators are therefore very useful to obtain information on specific distribution patterns and the influence of tributaries or structural measures, providing an important basis for the assessment of short- and long-term environmental risks and hazards.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.