{"title":"A high order PDE-constrained optimization for the image denoising problem","authors":"L. Afraites, A. Hadri, A. Laghrib, M. Nachaoui","doi":"10.1080/17415977.2020.1867547","DOIUrl":null,"url":null,"abstract":"In the present work, we investigate the inverse problem of identifying simultaneously the denoised image and the weighting parameter that controls the balance between two diffusion operators for an evolutionary partial differential equation (PDE). The problem is formulated as a non-smooth PDE-constrained optimization model. This PDE is constructed by second- and fourth-order diffusive tensors that combines the benefits from the diffusion model of Perona–Malik in the homogeneous regions, the Weickert model near sharp edges and the fourth-order term in reducing staircasing. The existence and uniqueness of solutions for the proposed PDE-constrained optimization system are provided in a suitable Sobolev space. Also, an optimization problem for the determination of the weighting parameter is introduced based on the Primal–Dual algorithm. Finally, simulation results show that the obtained parameter usually coincides with the better choice related to the best restoration quality of the image.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1821 - 1863"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2020.1867547","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2020.1867547","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 18
Abstract
In the present work, we investigate the inverse problem of identifying simultaneously the denoised image and the weighting parameter that controls the balance between two diffusion operators for an evolutionary partial differential equation (PDE). The problem is formulated as a non-smooth PDE-constrained optimization model. This PDE is constructed by second- and fourth-order diffusive tensors that combines the benefits from the diffusion model of Perona–Malik in the homogeneous regions, the Weickert model near sharp edges and the fourth-order term in reducing staircasing. The existence and uniqueness of solutions for the proposed PDE-constrained optimization system are provided in a suitable Sobolev space. Also, an optimization problem for the determination of the weighting parameter is introduced based on the Primal–Dual algorithm. Finally, simulation results show that the obtained parameter usually coincides with the better choice related to the best restoration quality of the image.
期刊介绍:
Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome.
Topics include:
-Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks).
-Material properties: determination of physical properties of media.
-Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.).
-Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.).
-Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.