Levi-flat CR structures on compact Lie groups

Pub Date : 2023-06-21 DOI:10.1007/s10455-023-09909-w
Howard Jacobowitz, Max Reinhold Jahnke
{"title":"Levi-flat CR structures on compact Lie groups","authors":"Howard Jacobowitz,&nbsp;Max Reinhold Jahnke","doi":"10.1007/s10455-023-09909-w","DOIUrl":null,"url":null,"abstract":"<div><p>Pittie (Proc Indian Acad Sci Math Sci 98:117-152, 1988) proved that the Dolbeault cohomology of all left-invariant complex structures on compact Lie groups can be computed by looking at the Dolbeault cohomology induced on a conveniently chosen maximal torus. We generalized Pittie’s result to left-invariant Levi-flat CR structures of maximal rank on compact Lie groups. The main tools we used was a version of the Leray–Hirsch theorem for CR principal bundles and the algebraic classification of left-invariant CR structures of maximal rank on compact Lie groups (Charbonnel and Khalgui in J Lie Theory 14:165-198, 2004) .</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10455-023-09909-w.pdf","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-023-09909-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pittie (Proc Indian Acad Sci Math Sci 98:117-152, 1988) proved that the Dolbeault cohomology of all left-invariant complex structures on compact Lie groups can be computed by looking at the Dolbeault cohomology induced on a conveniently chosen maximal torus. We generalized Pittie’s result to left-invariant Levi-flat CR structures of maximal rank on compact Lie groups. The main tools we used was a version of the Leray–Hirsch theorem for CR principal bundles and the algebraic classification of left-invariant CR structures of maximal rank on compact Lie groups (Charbonnel and Khalgui in J Lie Theory 14:165-198, 2004) .

Abstract Image

分享
查看原文
紧李群上的列维平面CR结构
Pittie(Proc Indian Acad Sci Math Sci 98:117-1521988)证明了紧致李群上所有左不变复结构的Dolbeault上同调可以通过观察在方便选择的最大环面上诱导的Dolbeaut上同调来计算。我们将Pittie的结果推广到紧致李群上最大秩的左不变Levi平坦CR结构。我们使用的主要工具是CR主丛的Leray–Hirsch定理的一个版本,以及紧李群上最大秩的左不变CR结构的代数分类(Charbonnel和Khalgui在J Lie Theory 14:165-1982004中)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信