Improving the vibrator ground force on unconsolidated ground surfaces in Middle East desert environments

Q2 Earth and Planetary Sciences
Leading Edge Pub Date : 2023-08-01 DOI:10.1190/tle42080557.1
Yongfei Qi, Zhouhong Wei, Fuhe Liang, Lizhong Zhao, J. Criss, Guofa Li
{"title":"Improving the vibrator ground force on unconsolidated ground surfaces in Middle East desert environments","authors":"Yongfei Qi, Zhouhong Wei, Fuhe Liang, Lizhong Zhao, J. Criss, Guofa Li","doi":"10.1190/tle42080557.1","DOIUrl":null,"url":null,"abstract":"Seismic vibrators have become the preferred sources for land seismic exploration. The objective of the vibrator is to transmit a known and spatially stable source wavelet so that any variations in seismic reflection data can be used to estimate the rock properties and geometries of subsurface geology. Unfortunately, the spatial variation of the ground surface can impact the vibrator performance. Field tests have revealed that the vibrator ground force decreases dramatically on unconsolidated sandy surface conditions, and the effect increases as the vibrator shakes toward high frequencies. A theoretical study is provided to explain this repeatable phenomenon that is independent of vibrator source control systems. Moreover, a practical solution, “BP control,” remedies this reduction in ground force over unconsolidated surfaces, especially sand, by introducing a new effective baseplate weight factor into the vibrator source controller. Field test results illustrate an increase in vibrator ground force at higher-frequency conditions over unconsolidated sand when implementing this new effective baseplate into the vibrator source controller. This increase in ground force may improve the recoverable bandwidth and lead to higher-resolution seismic images when encountering these surface conditions.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42080557.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

Abstract

Seismic vibrators have become the preferred sources for land seismic exploration. The objective of the vibrator is to transmit a known and spatially stable source wavelet so that any variations in seismic reflection data can be used to estimate the rock properties and geometries of subsurface geology. Unfortunately, the spatial variation of the ground surface can impact the vibrator performance. Field tests have revealed that the vibrator ground force decreases dramatically on unconsolidated sandy surface conditions, and the effect increases as the vibrator shakes toward high frequencies. A theoretical study is provided to explain this repeatable phenomenon that is independent of vibrator source control systems. Moreover, a practical solution, “BP control,” remedies this reduction in ground force over unconsolidated surfaces, especially sand, by introducing a new effective baseplate weight factor into the vibrator source controller. Field test results illustrate an increase in vibrator ground force at higher-frequency conditions over unconsolidated sand when implementing this new effective baseplate into the vibrator source controller. This increase in ground force may improve the recoverable bandwidth and lead to higher-resolution seismic images when encountering these surface conditions.
提高中东沙漠环境下非固结地面振动器的地面力
地震震源已成为陆地地震勘探的首选震源。振动器的目的是传输一个已知且空间稳定的源小波,以便地震反射数据的任何变化都可以用来估计岩石性质和地下地质的几何形状。然而,地表的空间变化会影响振动器的性能。现场试验表明,在松散的砂土表面条件下,振动器的地面力显著降低,并且随着振动器向高频方向振动,其作用增强。提供了一个理论研究来解释这种独立于振动源控制系统的可重复现象。此外,一种实用的解决方案——“BP控制”,通过在振动源控制器中引入新的有效底板重量因子,弥补了在未固结表面(特别是砂土)上地面力的减少。现场测试结果表明,当将这种新型有效底板安装到振动源控制器中时,在松散砂土的高频条件下,振动器的地面力有所增加。地面力量的增加可以提高可恢复带宽,并在遇到这些地面条件时获得更高分辨率的地震图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Leading Edge
Leading Edge Earth and Planetary Sciences-Geology
CiteScore
3.10
自引率
0.00%
发文量
180
期刊介绍: THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信