Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town

Q2 Environmental Science
M. Gedefaw, W. Hao, Denghua Yan, A. Girma
{"title":"Variable selection methods for water demand forecasting in Ethiopia: Case study Gondar town","authors":"M. Gedefaw, W. Hao, Denghua Yan, A. Girma","doi":"10.1080/23311843.2018.1537067","DOIUrl":null,"url":null,"abstract":"Abstract This study developed variable selection methods to forecast urban water demand of Gondar town. Seven variable selection methods are adopted to develop appropriate water demand forecasting model. Multiple linear regression analysis was used to investigate in identifying the optimal predictor variable for developing the water demand forecasting model. The results showed that PCA played a big role to identify the influential variables in modeling of water demand in a better way as compared to other statistical methods. We developed three models to forecast the demand of water in the study area. This study selected Model 1 since Model 1 gives accurate results as compared to Model 2 and Model 3.","PeriodicalId":45615,"journal":{"name":"Cogent Environmental Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23311843.2018.1537067","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Environmental Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311843.2018.1537067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 15

Abstract

Abstract This study developed variable selection methods to forecast urban water demand of Gondar town. Seven variable selection methods are adopted to develop appropriate water demand forecasting model. Multiple linear regression analysis was used to investigate in identifying the optimal predictor variable for developing the water demand forecasting model. The results showed that PCA played a big role to identify the influential variables in modeling of water demand in a better way as compared to other statistical methods. We developed three models to forecast the demand of water in the study area. This study selected Model 1 since Model 1 gives accurate results as compared to Model 2 and Model 3.
埃塞俄比亚用水需求预测的变量选择方法:以贡达尔镇为例
摘要本研究开发了变量选择方法来预测贡达尔镇的城市需水量。采用七种变量选择方法建立了合适的需水量预测模型。采用多元线性回归分析法研究了确定最佳预测变量的方法,用于开发需水量预测模型。结果表明,与其他统计方法相比,主成分分析在识别需水量建模中的影响变量方面发挥了重要作用,效果更好。我们开发了三个模型来预测研究区域的用水需求。本研究选择了模型1,因为与模型2和模型3相比,模型1给出了准确的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cogent Environmental Science
Cogent Environmental Science ENVIRONMENTAL SCIENCES-
自引率
0.00%
发文量
0
审稿时长
13 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信