Some inequalities involving the distance signless Laplacian eigenvalues of graphs

IF 0.6 Q3 MATHEMATICS
A. Alhevaz, M. Baghipur, S. Pirzada, Y. Shang
{"title":"Some inequalities involving the distance signless Laplacian eigenvalues of graphs","authors":"A. Alhevaz, M. Baghipur, S. Pirzada, Y. Shang","doi":"10.22108/TOC.2020.121940.1715","DOIUrl":null,"url":null,"abstract":"‎Given a simple graph $G$‎, ‎the distance signlesss Laplacian‎ ‎$D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix‎ ‎$Tr(G)$ and distance matrix $D(G)$‎. ‎In this paper‎, ‎thanks to the‎ ‎symmetry of $D^{Q}(G)$‎, ‎we obtain novel sharp bounds on the distance‎ ‎signless Laplacian eigenvalues of $G$‎, ‎and in particular the‎ ‎distance signless Laplacian spectral radius‎. ‎The bounds are‎ ‎expressed through graph diameter‎, ‎vertex covering number‎, ‎edge‎ ‎covering number‎, ‎clique number‎, ‎independence number‎, ‎domination‎ ‎number as well as extremal transmission degrees‎. ‎The graphs‎ ‎achieving the corresponding bounds are delineated‎. ‎In addition‎, ‎we‎ ‎investigate the distance signless Laplacian spectrum induced by‎ ‎Indu-Bala product‎, ‎Cartesian product as well as extended double‎ ‎cover graph‎.","PeriodicalId":43837,"journal":{"name":"Transactions on Combinatorics","volume":"10 1","pages":"9-29"},"PeriodicalIF":0.6000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions on Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/TOC.2020.121940.1715","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

‎Given a simple graph $G$‎, ‎the distance signlesss Laplacian‎ ‎$D^{Q}(G)=Tr(G)+D(G)$ is the sum of vertex transmissions matrix‎ ‎$Tr(G)$ and distance matrix $D(G)$‎. ‎In this paper‎, ‎thanks to the‎ ‎symmetry of $D^{Q}(G)$‎, ‎we obtain novel sharp bounds on the distance‎ ‎signless Laplacian eigenvalues of $G$‎, ‎and in particular the‎ ‎distance signless Laplacian spectral radius‎. ‎The bounds are‎ ‎expressed through graph diameter‎, ‎vertex covering number‎, ‎edge‎ ‎covering number‎, ‎clique number‎, ‎independence number‎, ‎domination‎ ‎number as well as extremal transmission degrees‎. ‎The graphs‎ ‎achieving the corresponding bounds are delineated‎. ‎In addition‎, ‎we‎ ‎investigate the distance signless Laplacian spectrum induced by‎ ‎Indu-Bala product‎, ‎Cartesian product as well as extended double‎ ‎cover graph‎.
涉及图的距离无符号拉普拉斯特征值的几个不等式
‎给定一个简单图$G$‎, ‎距离无符号拉普拉斯算子‎ ‎$D^{Q}(G)=Tr(G)+D(G)$是顶点传输矩阵的和‎ ‎$Tr(G)$和距离矩阵$D(G)$‎. ‎在本文中‎, ‎感谢‎ ‎$D^{Q}(G)的对称性$‎, ‎我们得到了关于距离的新的锐界‎ ‎$G的无符号拉普拉斯特征值$‎, ‎尤其是‎ ‎距离无符号拉普拉斯谱半径‎. ‎边界为‎ ‎通过图形直径表示‎, ‎顶点覆盖数‎, ‎边‎ ‎封面号码‎, ‎团数‎, ‎独立数‎, ‎统治‎ ‎数字以及极端传输度‎. ‎图表‎ ‎达到相应的界限‎. ‎此外‎, ‎我们‎ ‎研究由‎ ‎Indu Bala产品‎, ‎笛卡尔乘积和扩展二重‎ ‎覆盖图‎.
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
0.80
自引率
0.00%
发文量
2
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信