Numerical study on the effects of oblique impact on the ballistic behavior of 3D angle interlock woven fabric

IF 4 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Q. Wei, Dan Yang, Zhongxiang Pan
{"title":"Numerical study on the effects of oblique impact on the ballistic behavior of 3D angle interlock woven fabric","authors":"Q. Wei, Dan Yang, Zhongxiang Pan","doi":"10.1177/10567895231187672","DOIUrl":null,"url":null,"abstract":"3D angle interlock woven fabric(3DAWF) has great potential for impact protection. This paper investigates the ballistic mechanism of 3DAWF(5 layers of angle interlock – through the thickness) under normal and oblique impact. The full-size mesoscale model of 3DAWF under different impact directions and angles was established and systematically studied to reveal the 3DAWFs’ ballistic mechanism. The numerical studies of 3DAWF subjected to 0°, 15°, 30°, 45°, and 60° oblique impacts from two impact directions along 3DAWF structure configurations were carried out. We found that 3DAWFs’ ballistic performance increases non-linearly with impact obliquity. The ballistic mechanisms change with impact directions because of 3DAWFs’ anisotropic structure. This work also demonstrates the impact damage mechanism, energy absorption evolution, and stress wave distribution of the 3DAWF under oblique high-velocity impact. The findings are constructive for the 3DAWF applicated in ballistic protection.","PeriodicalId":13837,"journal":{"name":"International Journal of Damage Mechanics","volume":"32 1","pages":"1099 - 1121"},"PeriodicalIF":4.0000,"publicationDate":"2023-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Damage Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/10567895231187672","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

3D angle interlock woven fabric(3DAWF) has great potential for impact protection. This paper investigates the ballistic mechanism of 3DAWF(5 layers of angle interlock – through the thickness) under normal and oblique impact. The full-size mesoscale model of 3DAWF under different impact directions and angles was established and systematically studied to reveal the 3DAWFs’ ballistic mechanism. The numerical studies of 3DAWF subjected to 0°, 15°, 30°, 45°, and 60° oblique impacts from two impact directions along 3DAWF structure configurations were carried out. We found that 3DAWFs’ ballistic performance increases non-linearly with impact obliquity. The ballistic mechanisms change with impact directions because of 3DAWFs’ anisotropic structure. This work also demonstrates the impact damage mechanism, energy absorption evolution, and stress wave distribution of the 3DAWF under oblique high-velocity impact. The findings are constructive for the 3DAWF applicated in ballistic protection.
斜向冲击对三维角互锁织物弹道性能影响的数值研究
三维角度互锁机织物(3DAWF)具有巨大的冲击防护潜力。本文研究了3DAWF(5层贯穿厚度的角度互锁)在法向和斜向冲击下的弹道机理。建立了三维AWF在不同撞击方向和角度下的全尺寸中尺度模型,并对其进行了系统的研究,以揭示三维AWF的弹道机制。对三维AWF结构在0°、15°、30°、45°和60°两个冲击方向上的斜向冲击进行了数值研究。我们发现,3DAWF的弹道性能随着撞击倾角的增加而非线性增加。由于3DAWF的各向异性结构,弹道机制随冲击方向的变化而变化。该工作还展示了3DAWF在斜向高速冲击下的冲击损伤机制、能量吸收演化和应力波分布。研究结果对3DAWF在弹道防护中的应用具有建设性意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Damage Mechanics
International Journal of Damage Mechanics 工程技术-材料科学:综合
CiteScore
8.70
自引率
26.20%
发文量
48
审稿时长
5.4 months
期刊介绍: Featuring original, peer-reviewed papers by leading specialists from around the world, the International Journal of Damage Mechanics covers new developments in the science and engineering of fracture and damage mechanics. Devoted to the prompt publication of original papers reporting the results of experimental or theoretical work on any aspect of research in the mechanics of fracture and damage assessment, the journal provides an effective mechanism to disseminate information not only within the research community but also between the reseach laboratory and industrial design department. The journal also promotes and contributes to development of the concept of damage mechanics. This journal is a member of the Committee on Publication Ethics (COPE).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信