Anisotropic Model with Constant Jerk Parameter in \(\boldsymbol{f(R,T)}\) Gravity

IF 1.2 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS
R. K. Tiwari, D. Sofuoglu, S. K. Mishra, A. Beesham
{"title":"Anisotropic Model with Constant Jerk Parameter in \\(\\boldsymbol{f(R,T)}\\) Gravity","authors":"R. K. Tiwari,&nbsp;D. Sofuoglu,&nbsp;S. K. Mishra,&nbsp;A. Beesham","doi":"10.1134/S0202289322020141","DOIUrl":null,"url":null,"abstract":"<p>In the context of <span>\\(f(R,T)\\)</span> modified gravity theory, we consider a homogeneous and anisotropic Bianchi type-I cosmological model which relies on the condition of a constant jerk parameter, <span>\\(j=1\\)</span>, corresponding to a flat <span>\\(\\Lambda\\)</span>CDM model. Under this condition, we obtain two different solutions, one is power-law and the other one is exponential. The power-law solution gives a decelerating model, while the exponential one yields an accelerating cosmology. We discuss the physical and geometric properties of both models, validity of the solutions, and the significance of modified <span>\\(f(R,T)\\)</span> gravity for the models.</p>","PeriodicalId":583,"journal":{"name":"Gravitation and Cosmology","volume":"28 2","pages":"196 - 203"},"PeriodicalIF":1.2000,"publicationDate":"2022-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gravitation and Cosmology","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1134/S0202289322020141","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 3

Abstract

In the context of \(f(R,T)\) modified gravity theory, we consider a homogeneous and anisotropic Bianchi type-I cosmological model which relies on the condition of a constant jerk parameter, \(j=1\), corresponding to a flat \(\Lambda\)CDM model. Under this condition, we obtain two different solutions, one is power-law and the other one is exponential. The power-law solution gives a decelerating model, while the exponential one yields an accelerating cosmology. We discuss the physical and geometric properties of both models, validity of the solutions, and the significance of modified \(f(R,T)\) gravity for the models.

Abstract Image

\(\boldsymbol{f(R,T)}\)重力中恒定扰动参数的各向异性模型
在\(f(R,T)\)修正引力理论的背景下,我们考虑了一个齐次和各向异性的Bianchi i型宇宙学模型,该模型依赖于恒定的扰动参数\(j=1\)的条件,对应于平坦的\(\Lambda\) CDM模型。在这种情况下,我们得到了两个不同的解,一个是幂律解,另一个是指数解。幂律解给出了一个减速模型,而指数解给出了一个加速的宇宙学。我们讨论了这两个模型的物理和几何性质,解的有效性,以及修正\(f(R,T)\)重力对模型的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Gravitation and Cosmology
Gravitation and Cosmology ASTRONOMY & ASTROPHYSICS-
CiteScore
1.70
自引率
22.20%
发文量
31
审稿时长
>12 weeks
期刊介绍: Gravitation and Cosmology is a peer-reviewed periodical, dealing with the full range of topics of gravitational physics and relativistic cosmology and published under the auspices of the Russian Gravitation Society and Peoples’ Friendship University of Russia. The journal publishes research papers, review articles and brief communications on the following fields: theoretical (classical and quantum) gravitation; relativistic astrophysics and cosmology, exact solutions and modern mathematical methods in gravitation and cosmology, including Lie groups, geometry and topology; unification theories including gravitation; fundamental physical constants and their possible variations; fundamental gravity experiments on Earth and in space; related topics. It also publishes selected old papers which have not lost their topicality but were previously published only in Russian and were not available to the worldwide research community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信