On The Geometric Determination of Extensions of Non-Archimedean Absolute Values

Q4 Mathematics
Mohamed Faris, L. El Fadil
{"title":"On The Geometric Determination of Extensions of Non-Archimedean Absolute Values","authors":"Mohamed Faris, L. El Fadil","doi":"10.2478/tmmp-2023-0007","DOIUrl":null,"url":null,"abstract":"Abstract Let | | be a discrete non-archimedean absolute value of a field K with valuation ring 𝒪, maximal ideal 𝓜 and residue field 𝔽 = 𝒪/𝓜. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial F ∈ O[x]. Assume that F¯=ϕ¯l$\\overline F = \\overline \\varphi ^l$ in 𝔽[x] for some monic polynomial φ ∈ O[x] whose reduction modulo 𝓜 is irreducible, the φ-Newton polygon Nφ¯(F)$N\\overline \\phi \\left( F \\right)$ has a single side of negative slope λ, and the residual polynomial Rλ(F )(y) has no multiple factors in 𝔽φ[y]. In this paper, we describe all absolute values of L extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.","PeriodicalId":38690,"journal":{"name":"Tatra Mountains Mathematical Publications","volume":"83 1","pages":"87 - 102"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tatra Mountains Mathematical Publications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/tmmp-2023-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Let | | be a discrete non-archimedean absolute value of a field K with valuation ring 𝒪, maximal ideal 𝓜 and residue field 𝔽 = 𝒪/𝓜. Let L be a simple finite extension of K generated by a root α of a monic irreducible polynomial F ∈ O[x]. Assume that F¯=ϕ¯l$\overline F = \overline \varphi ^l$ in 𝔽[x] for some monic polynomial φ ∈ O[x] whose reduction modulo 𝓜 is irreducible, the φ-Newton polygon Nφ¯(F)$N\overline \phi \left( F \right)$ has a single side of negative slope λ, and the residual polynomial Rλ(F )(y) has no multiple factors in 𝔽φ[y]. In this paper, we describe all absolute values of L extending | |. The problem is classical but our approach uses new ideas. Some useful remarks and computational examples are given to highlight some improvements due to our results.
关于非阿基米德绝对值扩张的几何判定
摘要:设| |是域K的离散非阿基米德绝对值,其值环为,极大理想为剩余域为 = / 。设L是由一元不可约多项式F∈O[x]的根α生成的K的简单有限扩展。假设F¯= φ¯1$\overline F = \overline \varphi ^l$ 对于某一元多项式φ∈O[x],其约化模是不可约的,在n [x]中,φ-牛顿多边形Nφ¯(F)$N\overline \phi \left( F \right)$ 单侧斜率为负λ,残差多项式Rλ(F)(y)在𝔽φ[y]中没有多因子。本文描述了扩展| |的L的所有绝对值。这个问题很经典,但我们的方法采用了新思路。给出了一些有用的评论和计算实例,以突出我们的结果所带来的一些改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Tatra Mountains Mathematical Publications
Tatra Mountains Mathematical Publications Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信