{"title":"Transmit Antenna Selection for Sum-Rate Maximization with Multiclass Scalable Gaussian Process Classification","authors":"Xiaofeng Yang","doi":"10.1155/2023/3547030","DOIUrl":null,"url":null,"abstract":"Antenna selection techniques are extensively applied to reduce hardware cost and power consumption in multiple-input multiple-output (MIMO) systems. This paper proposed a low-cost antenna selection method for system sum-rate maximization based on multiclass scalable Gaussian process classification (SGPC) which is capable to perform analytical inference and is scalable for massive data. Simulation results show that the average sum-rate obtained by SGPC is 1. 9 bps/Hz more than that obtained by conventional optimization driven user-centric antenna selection (UCAS) algorithm and 1 bps/Hz more than that obtained by the up-to-date learning scheme based on a deep neural network (DNN) when signal-to-noise ratio (SNR) is 10 dB, the number of total antennas at BS is 6, the number of selected antennas is 4, and the number of single-antenna users is 4. The superiority of SGPC over UCAS and DNN is more obvious as SNR, the number of selected antennas, or the number of users increases.","PeriodicalId":54392,"journal":{"name":"International Journal of Antennas and Propagation","volume":" ","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1155/2023/3547030","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Antenna selection techniques are extensively applied to reduce hardware cost and power consumption in multiple-input multiple-output (MIMO) systems. This paper proposed a low-cost antenna selection method for system sum-rate maximization based on multiclass scalable Gaussian process classification (SGPC) which is capable to perform analytical inference and is scalable for massive data. Simulation results show that the average sum-rate obtained by SGPC is 1. 9 bps/Hz more than that obtained by conventional optimization driven user-centric antenna selection (UCAS) algorithm and 1 bps/Hz more than that obtained by the up-to-date learning scheme based on a deep neural network (DNN) when signal-to-noise ratio (SNR) is 10 dB, the number of total antennas at BS is 6, the number of selected antennas is 4, and the number of single-antenna users is 4. The superiority of SGPC over UCAS and DNN is more obvious as SNR, the number of selected antennas, or the number of users increases.
期刊介绍:
International Journal of Antennas and Propagation publishes papers on the design, analysis, and applications of antennas, along with theoretical and practical studies relating the propagation of electromagnetic waves at all relevant frequencies, through space, air, and other media.
As well as original research, the International Journal of Antennas and Propagation also publishes focused review articles that examine the state of the art, identify emerging trends, and suggest future directions for developing fields.